This study investigated the static mechanical responses of gangue cemented backfill materials (GCBM) with aggregate particle size distribution (APSD) satisfied fractal grading theory. The recycling of gangue in GCBM alleviates gangue accumulation pollution and improves mining production efficiency. Macroscopically, uniaxial compression experiments regarding various loading strain rates (ε̇) on gangue cemented backfill specimens (GCBS) were conducted. Acoustic emission monitoring and digital image correlation technique were employed to reveal crack activities and strain field evolution in real time. Microscopically, scanning electron microscopy and numerical specimens considering APSD were utilized to analyze the microstructure and damage process. The deterioration mechanisms and quantified number of cracks were explored at the micro level. The conclusions are as follows: (1) The axial stress (σ) of GCBM increased with fractal dimension (D) of APSD and ε̇. For the same σ, cumulative AE counts decreased with increasing ε̇ and D. (2) The main failure mode of the GCBS under static loading was tensile failure, exhibiting tensile cracks initiating at the bonding–aggregate interface. (3) The increase in the proportion of fine aggregate contributed to the optimization of the microstructures of the GCBS (4) An increased proportion of fine aggregate in the GCBS improved the synergistic load-bearing capacity between the cementing and aggregate mediums, leading to an enhancement in the σ.

1.
L. W.
Xin
, “
Meso-scale modeling of the influence of waste rock content on the mechanical behavior of cemented tailings backfill
,”
Constr. Build. Mater.
307
,
124473
(
2021
).
2.
F.
Chen
,
L. J.
Zhang
,
C. Y.
Zou
et al, “
Study on influencing factors of shear characteristics of a rock-fill concrete layer of iron tailings as fine aggregate
,”
Constr. Build. Mater.
345
,
128213
(
2022
).
3.
H. F.
Qiu
,
F. S.
Zhang
,
L.
Liu
et al, “
Experimental study on acoustic emission characteristics of cemented rock-tailings backfill
,”
Constr. Build. Mater.
315
,
125278
(
2022
).
4.
W. X.
Zheng
,
D. J.
Wang
,
F. Y.
Lyu
et al, “
Influence of elasticity of high-concentration paste on unsteady flow in pipeline transportation
,”
Phys. Fluids
36
,
013113
(
2024
).
5.
B. X.
Huang
and
J.
Liu
, “
The effect of loading rate on the behavior of samples composed of coal and rock
,”
Int. J. Rock. Mech. Min.
61
,
23
30
(
2013
).
6.
S. H.
Yin
,
Y. J.
Shao
,
A.
Wu
et al, “
Expansion and strength properties of cemented backfill using sulphidic mill tailings
,”
Constr. Build. Mater.
165
,
138
148
(
2018
).
7.
Q.
Yin
,
X. X.
Nie
,
J. Y.
Wu
et al, “
Fracturing evolution and strain characteristics of layered rock-like materials with rough interfaces
,”
J. Mater. Res. Technol.
24
,
49
70
(
2023
).
8.
F.
Cihangir
,
B.
Ercikdi
,
A.
Kesimal
et al, “
Utilisation of alkali- activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage
,”
Miner. Eng.
30
,
33
43
(
2012
).
9.
A.
Kesimal
,
E.
Yilmaz
, and
B.
Ercikdi
, “
Evaluation of paste backfill mixtures consisting of sulphide-rich mill tailings and varying cement contents
,”
Cem. Concr. Res.
34
(
10
),
1817
1822
(
2004
).
10.
B.
Ercikdi
,
G.
Külekci
, and
T.
Yılmaz
, “
Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings
,”
Constr. Build. Mater.
93
,
573
583
(
2015
).
11.
Y.
Gao
,
Z. X.
Yu
,
Z. J. N.
Cheng
et al, “
Influence of industrial graphene oxide on tensile behavior of cemented waste rock backfill
,”
Constr. Build. Mater.
371
,
130787
(
2023
).
12.
L.
Li
,
D. X.
Xuan
,
A. O.
Sojobi
et al, “
Development of nano-silica treatment methods to enhance recycled aggregate concrete
,”
Cem. Concr. Compos.
118
,
103963
(
2021
).
13.
Y.
Liu
,
F.
Dai
,
P. X.
Fan
et al, “
Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression
,”
Rock Mech. Rock Eng.
50
(
6
),
1453
1471
(
2017
).
14.
B.
Koohestani
,
P.
Mokhtari
,
E.
Yilmaz
et al, “
Geopolymerization mechanism of binder-free mine tailings by sodium silicate
,”
Constr. Build. Mater.
268
,
121217
(
2021
).
15.
Z. Y.
Zhao
,
S.
Cao
, and
E.
Yilmaz
, “
Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites
,”
Int. J. Miner. Metall. Mater.
30
(
2
),
236
249
(
2023
).
16.
X. S.
Shi
and
J.
Zhao
, “
Practical estimation of compression behavior of clayey/silty sands using equivalent void-ratio concept
,”
J. Geotech. Geoenviron. Eng.
146
(
6
),
4020046
(
2020
).
17.
B.
Sainsbury
,
S.
Gharehdash
, and
D.
Sainsbury
, “
Large-scale characterisation of cemented rock fill performance for exposure stability analysis
,”
Constr. Build. Mater.
308
,
124995
(
2021
).
18.
G.
Chen
,
Y.
Ye
,
N.
Yao
et al, “
Deformation failure and acoustic emission characteristics of continuous graded waste rock cemented backfill under uniaxial compression
,”
Environ. Sci. Pollut. Res.
29
(
53
),
80109
80122
(
2022
).
19.
Y. B.
Yang
,
X. P.
Lai
,
Y.
Zhang
et al, “
Strength deterioration and energy dissipation characteristics of cemented backfill with different gangue particle size distributions
,”
J. Mater. Res. Technol.
25
,
5122
5135
(
2023
).
20.
B. P.
Gautam
,
D. K.
Panesar
,
S. A.
Sheikh
et al, “
Effect of coarse aggregate grading on the ASR expansion and damage of concrete
,”
Cem. Concr. Res.
95
,
75
83
(
2017
).
21.
Y. M.
Wang
,
J. Y.
Wu
,
D.
Ma
et al, “
Effect of aggregate size distribution and confining pressure on mechanical property and microstructure of cemented gangue backfill materials
,”
Adv. Powder. Technol.
33
(
8
),
103686
(
2022
).
22.
E. G.
Thomas
and
P. N.
Holtham
, “
The basics of preparation of deslimed mill tailing hydraulic fill
,” in
Innovations in Mining Backfill Technology
, edited by
F. P.
Hassani
,
M. J.
Scoble
, and
T. R.
Yu
(
CRC Press
,
2021
).
23.
A.
Kesimal
,
B.
Ercikdi
, and
E.
Yilmaz
, “
The effect of desliming by sedimentation on paste backfill performance
,”
Miner. Eng.
16
(
10
),
1009
1011
(
2003
).
24.
J. Y.
Wu
,
H. W.
Jing
et al, “
Macroscopic and mesoscopic mechanical properties of cemented waste rock backfill using fractal gangue (in Chinese)
,”
Chin. J. Rock. Mech. Eng.
40
,
2083
2100
(
2021
).
25.
X.
Ke
,
H. B.
Hou
,
M.
Zhou
et al, “
Effect of particle gradation on properties of fresh and hardened cemented paste backfill
,”
Constr. Build. Mater.
96
,
378
382
(
2015
).
26.
X. L.
Wang
,
J. P.
Guo
,
A. X.
Wu
et al, “
Pressure drop of cemented high-concentration backfill in pipe flow: Loop test, model comparison and numerical simulation
,”
Phys. Fluids.
35
,
103107
(
2023
).
27.
S.
Cao
,
E.
Yilmaz
,
W. D.
Song
et al, “
Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill
,”
Constr. Build. Mater.
213
,
313
324
(
2019
).
28.
Z. G.
Xiu
,
S. H.
Wang
,
Y. C.
Ji
et al, “
Loading rate effect on the uniaxial compressive strength (UCS) behavior of cemented paste backfill (CPB)
,”
Constr. Build. Mater.
271
,
121526
(
2021
).
29.
X. P.
Song
,
J. B.
Li
,
S.
Wang
et al, “
Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution
,”
Constr. Build. Mater.
361
,
129737
(
2022
).
30.
M.
Li
and
J. X.
Zhang
et al, “
Influence of particle size distribution on fractal characteristics of waste rock backfill materials under compression
,”
J. Mater. Res. Technol.
20
,
2977
2989
(
2022
).
31.
Y.
Liu
and
D. P.
Chen
et al, “
Study on mesoscopic acoustic emission characteristics of tailings cemented backfill considering loading rate effect (In Chinese)
,”
Nonferrous Met. Eng.
12
,
109
122
(
2022
).
32.
N. H. T.
Nguyen
,
H. H.
Bui
,
S.
Arooran
et al, “
Discrete element method investigation of particle size distribution effects on the flexural properties of cement-treated base
,”
Comput. Geotech.
113
,
103096
(
2019
).
33.
J. M.
Qi
,
H. D.
Zhang
,
L.
Zhou
et al, “
Experimental and numerical study of crack propagation characteristics of tri-cracked rocks based on distinct element method (In Chinese)
,”
Min. Saf. Environ. Prot.
51
,
107
115
(
2024
).
34.
S. S.
Shi
,
P.
Wu
,
L.
Li
et al, “
Microscopic mechanism of squeeze expulsion in granular size segregation
,”
Phys. Fluids
36
(
8
),
083342
(
2024
).
35.
M.
Bahaaddini
,
G.
Sharrock
, and
B. K.
Hebblewhite
, “
Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression
,”
Comput. Geotech.
49
,
206
225
(
2013
).
36.
Z. M.
Huang
,
Z. G.
Ma
,
L.
Zhang
et al, “
A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression
,”
Int. J. Min. Sci. Technol.
26
,
309
317
(
2016
).
37.
Q. S.
Liu
,
D. F.
Liu
,
Y. C.
Tian
et al, “
Numerical simulation of stress-strain behaviour of cemented paste backfill in triaxial compression
,”
Eng. Geol.
231
,
165
175
(
2017
).
38.
J. Y.
Wu
,
H. W.
Jing
,
Y.
Gao
et al, “
Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill
,”
Cem. Concr. Compos.
127
,
104408
(
2022
).
39.
ISRM
, “
Suggested methods for determining tensile strength of rock materials
,”
Int. J. Rock. Mech. Min. Sci.
15
(
3
),
99
103
(
1978
).
40.
ASTM International
, “
Standard practice for making and curing concrete test specimens in the lab
,” Standard No. ASTM C192/C192M-13a (
ASTM International
,
West Conshohocken, PA
,
2013
).
41.
M. G.
Culshaw
, “
The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014
,”
Bull. Eng. Geol. Environ.
74
(
4
),
1499
1500
(
2015
).
42.
J. Y.
Wu
,
H. S.
Wong
,
H.
Zhang
et al, “
Improvement of cemented rockfill by premixing low-alkalinity activator and fly ash for recycling gangue and partially replacing cement
,”
Cem. Concr. Compos.
145
,
105345
(
2024
).
43.
X.
Wang
,
Z. J.
Wen
,
Y. J.
Jiang
et al, “
Experimental study on mechanical and acoustic emission characteristics of rock-like material under nonuniformly distributed loads
,”
Rock Mech. Rock Eng.
51
,
729
745
(
2018
).
44.
B. B.
Mandelbrot
, “
The fractal geometry of nature
,”
Am. J. Phys.
51
(
3
),
286
286
(
1983
).
45.
S. W.
Tyler
and
S. W.
Wheatcraft
, “
Fractal scaling of soil particle-size distributions: Analysis and limitations
,”
Soil Sci. Soc. Am. J.
56
,
362
369
(
1992
).
46.
Q. Y.
Wang
and
J. S.
Hu
, “
Gradings of the concrete aggregates and fractals (In Chinese)
,”
Rock. Soil. Mech.
3
,
93
100
(
1997
).
47.
Y. F.
Xu
and
F.
Lin
, “
Tensile strength and deformation characteristics of granular materials (In Chinese)
,”
Rock. Mech.
27
,
348
352
(
2006
).
48.
J. P.
Zuo
,
Z. J.
Hong
,
Z. Q.
Xiong
et al, “
Influence of different W/C on the performances and hydration progress of dual liquid highwater backfilling material
,”
Constr. Build. Mater.
190
,
910
917
(
2018
).
49.
X. B.
Li
, Rock Dynamics Fundamentals and Applications (Science Press, Beijing, 2014).
50.
J. L.
Cheng
,
S. Q.
Yang
,
K.
Chen
et al, “
Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)
,”
Acta Mech. Sin.
33
,
999
1021
(
2017
).
51.
H. J.
Su
,
Y. J.
Nie
,
L. Y.
Yu
et al, “
Study on tensile mechanical properties of sandstone-concrete bonding interface after high-temperature treatment (In Chinese)
,”
Chin. Civil. Eng. J.
56
,
157
167
(
2023
).
52.
K.
Peng
,
T.
Wu
,
Y. M.
Wang
et al, “
Mechanical behavior and energy characteristics of red sandstone with different seawater immersion heights under biaxial compression
,”
Phys. Fluids
36
(
8
),
086620
(
2024
).
53.
C. L.
Hou
,
Y. Q.
Wu
,
C.
Pu
et al, “
Effects of temperature on fracture and damage characteristics of deep granite
,”
Phys. Fluids
36
(
7
),
077118
(
2024
).
54.
K.
Du
,
X. F.
Li
,
M.
Tao
et al, “
Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests
,”
Int. J. Rock. Mech. Min. Sci.
133
,
104411
(
2020
).
55.
JCMS-III B5706
,
Monitoring Method for Active Cracks in Concrete by Acoustic Emission
(
Federation of Construction Materials Industries
,
Japan
,
2003
).
56.
Z.
Jiang
,
Q.
Yin
,
J. Y.
Wu
et al, “
The effect of cyclic heating and cooling on mechanical and deformation responses of granites under preset angle shearing
,”
Environ. Earth Sci.
82
,
29
(
2023
).
57.
X. X.
Nie
,
Q.
Yin
,
Q.
Wang
et al, “
Investigating mechanical properties of cemented gangue backfill materials subjected to static-dynamic combined loads
,”
Constr. Build. Mater.
400
,
132674
(
2023
).
58.
S. T.
Geng
,
L. Y.
Yu
,
D. Y.
Wu
et al, “
Thermal effects on tensile behavior and failure characteristics of granite-concrete bi-materials with different loading directions
,”
Constr. Build. Mater.
394
,
132155
(
2023
).
59.
W. B.
Wang
,
H. J.
Su
,
H. H.
Zhao
et al, “
Experimental investigation on mode I fracture behavior of sandstone after grouting filling under three-point bending
,”
Eng. Fract. Mech.
291
,
109578
(
2023
).
60.
J. M.
Qi
,
L.
Zhou
,
H. D.
Zhang
et al, “
Research on crack evolution law and mechanical analysis of three cracked rock masses subjected to compression load
,”
Theoret. Appl. Fract. Mech.
127
,
104035
(
2023
).
61.
P.
Cundall
and
O.
Strack
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
,
47
65
(
2008
).
62.
D. O.
Potyondy
and
P. A.
Cundall
, “
A bonded-particle model for rock
,”
Int. J. Rock Mech. Min. Sci.
41
,
1329
(
2004
).
63.
C.
Thornton
, “
Numerical simulations of deviatoric shear deformation of granular media
,”
Géotechnique
50
,
43
(
2000
).
You do not currently have access to this content.