Quantum computing presents a possible paradigm shift in computing, given its advantages in memory and speed. However, there is a growing need to demonstrate its utility in solving practical problems that are nonlinear, such as in fluid dynamics, which is the subject of this work. To facilitate this objective, it is essential to have a dedicated toolkit that enables the development, testing, and simulation of new quantum algorithms and flow problems, taken together. To this end, we present here a high performance, quantum computational simulation package called Quantum Flow Simulator (QFlowS), designed for computational fluid dynamics simulations. QFlowS is a versatile tool that can create and simulate quantum circuits using an in-built library of fundamental quantum gates and operations. We outline here all its functionalities with illustrations. Algorithms to solve flow problems can be built using the expanding list of the core functionalities of QFlowS with its hybrid quantum–classical type workflow. This is demonstrated here by solving an example, one-dimensional, diffusion flow problem. These simulations serve as a check on the algorithm's correctness as well as an ideal test-bed for making them more efficient and better suited for near-term quantum computers for addressing flow problems.

1.
K. P.
Iyer
,
S. S.
Bharadwaj
, and
K. R.
Sreenivasan
, “
The area rule for circulation in three-dimensional turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2114679118
(
2021
).
2.
P. K.
Yeung
,
K.
Ravikumar
,
S.
Nichols
, and
K.
Uma-Vaideswaran
, “
GPU-enabled extreme-scale turbulence simulations: Fourier pseudo-spectral algorithms at the Exascale using OpenMP offloading.
,”
Comput. Phys. Commun.
306
,
109364
(
2024
).
3.
S. S.
Bharadwaj
and
K. R.
Sreenivasan
, “
Simulating fluid flows with quantum computing
,” arXiv:2409.09736 (
2024
).
4.
Quantiki
, see https://quantiki.org/wiki/list-qc-simulators for “
List of quantum simulators
” (
2023
).
5.
T.
Jones
,
A.
Brown
,
I.
Bush
, and
S. C.
Benjamin
, “
Quest and high performance simulation of quantum computers
,”
Sci. Rep.
9
,
10736
(
2019
).
6.
S. S.
Bharadwaj
and
K. R.
Sreenivasan
, “
Quantum computation of fluid dynamics
,”
Ind. Acad. Sci. Conf. Ser.
3
,
77
(
2020
).
7.
B.
Villalonga
,
D.
Lyakh
,
S.
Boixo
,
H.
Neven
,
T. S.
Humble
,
R.
Biswas
,
E. G.
Rieffel
,
A.
Ho
, and
S.
Mandrà
, “
Establishing the quantum supremacy frontier with a 281 Pflop/s simulation
,”
Quantum Sci. Technol.
5
,
034003
(
2020
).
8.
S.
Sivarajah
,
S.
Dilkes
,
A.
Cowtan
,
W.
Simmons
,
A.
Edgington
, and
R.
Duncan
, “
t|ket>: A retargetable compiler for NISQ devices
,”
Quantum Sci. Technol.
6
,
014003
(
2020
).
9.
J.
Ingelmann
,
S. S.
Bharadwaj
,
P.
Pfeffer
,
K. R.
Sreenivasan
, and
J.
Schumacher
, “
Two quantum algorithms for solving the one-dimensional advection-diffusion equation
,”
Comput. Fluids
281
,
106369
(
2024
).
10.
S. S.
Bharadwaj
and
K. R.
Sreenivasan
, “
Hybrid quantum algorithms for flow problems
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2311014120
(
2023
).
11.
S. S.
Bharadwaj
,
B.
Nadiga
,
S.
Eidenbenz
, and
K. R.
Sreenivasan
, “
Quantum computing of nonlinear flow problems with a homotopy analysis algorithm
,” in 76th APS DFD Conference (APS,
2023
).
12.
P.-G.
Martinsson
,
Fast Direct Solvers for Elliptic PDEs
(
SIAM
,
2019
).
13.
S. S.
Bharadwaj
and
K. R.
Sreenivasan
, “
Compact quantum algorithms that can potentially maintain quantum advantage for solving time-dependent differential equations
,” arXiv:2405.09767 (
2024
).
14.
J.-P.
Liu
,
H. Ø.
Kolden
,
H. K.
Krovi
,
N. F.
Loureiro
,
K.
Trivisa
, and
A. M.
Childs
, “
Efficient quantum algorithm for dissipative nonlinear differential equations
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2026805118
(
2021
).
15.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2010
).
16.
N.
Gourianov
,
M.
Lubasch
,
S.
Dolgov
,
Q. Y.
van den Berg
,
H.
Babaee
,
P.
Givi
,
M.
Kiffner
, and
D.
Jaksch
, “
A quantum-inspired approach to exploit turbulence structures
,”
Nat. Comput. Sci.
2
,
30
(
2022
).
17.
A.
Barenco
,
C. H.
Bennett
,
R.
Cleve
,
D. P.
DiVincenzo
,
N.
Margolus
,
P.
Shor
,
T.
Sleator
,
J. A.
Smolin
, and
H.
Weinfurter
, “
Elementary gates for quantum computation
,”
Phys. Rev. A
52
,
3457
(
1995
).
18.
B. N.
Todorova
and
R.
Steijl
, “
Quantum algorithm for the collisionless Boltzmann equation
,”
J. Comput. Phys.
409
,
109347
(
2020
).
19.
L.
Budinski
, “
Quantum algorithm for the advection–diffusion equation simulated with the lattice Boltzmann method
,”
Quantum Inf. Process.
20
,
57
(
2021
).
20.
W.
Itani
,
K. R.
Sreenivasan
, and
S.
Succi
, “
Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term
,”
Phys. Fluids
36
,
017112
(
2024
).
21.
S.
Jin
,
N.
Liu
, and
Y.
Yu
, “
Quantum simulation of partial differential equations via Schrodingerisation: Technical details
,” arXiv:2212.14703 (
2022
).
22.
Z.
Meng
and
Y.
Yang
, “
Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation
,”
Phys. Rev. Res.
5
,
033182
(
2023
).
23.
S.
Jin
,
X.
Li
,
N.
Liu
, and
Y.
Yu
, “
Quantum simulation for partial differential equations with physical boundary or interface conditions
,”
J. Comput. Phys.
498
,
112707
(
2024
).
24.
M.
Lubasch
,
J.
Joo
,
P.
Moinier
,
M.
Kiffner
, and
D.
Jaksch
, “
Variational quantum algorithms for nonlinear problems
,”
Phys. Rev. A
101
,
010301
(
2020
).
25.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
, “
Quantum algorithm for linear systems of equations
,”
Phys. Rev. Lett.
103
,
150502
(
2009
).
26.
A. M.
Childs
,
R.
Kothari
, and
R. D.
Somma
, “
Quantum algorithm for systems of linear equations with exponentially improved dependence on precision
,”
SIAM J. Comput.
46
,
1920
(
2017
).
27.
A. J.
Pool
,
A. D.
Somoza
,
C. M.
Keever
,
M.
Lubasch
, and
B.
Horstmann
, “
Nonlinear dynamics as a ground-state solution on quantum computers
,” arXiv:2403.16791 (
2024
).
28.
C.
Bravo-Prieto
,
R.
LaRose
,
M.
Cerezo
,
Y.
Subasi
,
L.
Cincio
, and
P. J.
Coles
, “
Variational quantum linear solver
,”
Quantum
7
,
1188
(
2023
).
29.
S. S.
Bharadwaj
and
K. R.
Sreenivasan
, “
An introduction to algorithms in quantum computation of fluid dynamics
,”
STO EN-AVT-377
(
NATO
,
2022
), Vol.
58
.
You do not currently have access to this content.