The formation of large-scale circulating structures (LSC) is one of the critical characteristics of turbulent Rayleigh–Bénard convection (RBC). Although the effect of LSC in turbulent RBC was disputed due to conflicting results, recently, the results of three-dimensional direct numerical simulation [Zwirner et al., “Elliptical instability and multiple-roll flow modes of the large-scale circulation in confined turbulent Rayleigh-Bénard convection,” Phys. Rev. Lett. 125, 54502 (2020)] confirmed that in RBC flows with a low Prandtl number, Pr=0.1 within Oberbeck–Boussinesq assumption, the formation of higher number of LSC leads to a decrease in heat and momentum transfer. However, it was shown that for higher Prandtl numbers, heat/momentum transfer is not correlated with the number of LSC. Experimental evidence is investigated of an inverse correlation between the momentum transfer and small-scale rolling structures for high Prandtl non-Oberbeck–Boussinesq condition. Experiments were undertaken at a Prandtl number of Pr=7 and Rayleigh number of Ra=5.3×107 in a cubical convection cell with an unit aspect ratio. Particle image velocimetry along with a robust combinatorial vortex detection algorithm was used to capture the flow field, detect the rolling structures, and estimate their size. It was found that although the flow structures were dominated by the LSC, the number of smaller rolling structures was significant. The results also showed that after the initiation of convection while the flow was still undeveloped, the majority of rolling structures were small scale. For this state, an inverse correlation between the number of rolling structures and momentum transfer was observed highlighting the influence of flow rolling structures regardless of the formation of the LSC.

1.
A.
Bejan
,
Convection Heat Transfer
(
John Wiley & Sons
,
2013
).
2.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
32
(
1
),
709
778
(
2000
).
3.
T.
Meuel
,
M.
Coudert
,
P.
Fischer
,
C.-H.
Bruneau
, and
H.
Kellay
, “
Effects of rotation on temperature fluctuations in turbulent thermal convection on a hemisphere
,”
Sci. Rep.
8
(
1
),
16513
(
2018
).
4.
M.
Krishnan
,
V. M.
Ugaz
, and
M. A.
Burns
, “
PCR in a Rayleigh-Bénard convection cell
,”
Science
298
,
793
(
2002
).
5.
D.
Khodakov
,
J.
Li
,
J. X.
Zhang
, and
D. Y.
Zhang
, “
Highly multiplexed rapid DNA detection with single-nucleotide specificity via convective PCR in a portable device
,”
Nat. Biomed. Eng.
5
,
702
(
2021
).
6.
O.
Shishkina
, “
Rayleigh-Bénard convection: The container shape matters
,”
Phys. Rev. Fluids
6
,
090502
(
2021
).
7.
G.
Ahlers
,
E.
Bodenschatz
,
R.
Hartmann
,
X.
He
,
D.
Lohse
,
P.
Reiter
,
R. J.
Stevens
,
R.
Verzicco
,
M.
Wedi
,
S.
Weiss
et al, “
Aspect ratio dependence of heat transfer in a cylindrical Rayleigh-Bénard cell
,”
Phys. Rev. Lett.
128
,
084501
(
2022
).
8.
H. D.
Xi
,
S.
Lam
, and
K. Q.
Xia
, “
From laminar plumes to organized flows: The onset of large-scale circulation in turbulent thermal convection
,”
J. Fluid Mech.
503
,
47
(
2004
).
9.
R.
Krishnamurti
and
L. N.
Howard
, “
Large-scale flow generation in turbulent convection
,”
Proc. Natl. Acad. Sci. U. S. A.
78
,
1981
(
1981
).
10.
J.-Q.
Zhong
and
G.
Ahlers
, “
Heat transport and the large- scale circulation in rotating turbulent Rayleigh-Bénard convection
,”
J. Fluid Mech.
665
,
300
(
2010
).
11.
H.-D.
Xi
and
K.-Q.
Xia
, “
Flow mode transitions in turbulent thermal convection
,”
Phys. Fluids
20
,
055104
(
2008
).
12.
R.
Hartmann
,
K. L.
Chong
,
R. J.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Heat transport enhancement in confined Rayleigh-Bénard convection feels the shape of the container
,”
Europhys. Lett.
135
,
24004
(
2021
).
13.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large-scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
(
2009
).
14.
D.
Funfschilling
,
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection in cylindrical samples with aspect ratio one and larger
,”
J. Fluid Mech.
536
,
145
(
2005
).
15.
A.
Nikolaenko
,
E.
Brown
,
D.
Funfschilling
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection in cylindrical cells with aspect ratio one and less
,”
J. Fluid Mech.
523
,
251
(
2005
).
16.
C.
Sun
,
L.-Y.
Ren
,
H.
Song
, and
K.-Q.
Xia
, “
Heat transport by turbulent Rayleigh-Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio
,”
J. Fluid Mech.
542
,
165
(
2005
).
17.
S.
Weiss
and
G.
Ahlers
, “
Effect of tilting on turbulent convection: Cylindrical samples with aspect ratio
,”
J. Fluid Mech.
715
,
314
(
2013
).
18.
E. P.
Van Der Poel
,
R. J.
Stevens
, and
D.
Lohse
, “
Connecting flow structures and heat flux in turbulent Rayleigh- Bénard convection
,”
Phys. Rev. E
84
,
1
(
2011
).
19.
E. P.
van der Poel
,
R. J.
Stevens
,
K.
Sugiyama
, and
D.
Lohse
, “
Flow states in two-dimensional Rayleigh- Bénard convection as a function of aspect ratio and Rayleigh number
,”
Phys. Fluids
24
,
085104
(
2012
).
20.
L.
Zwirner
,
A.
Tilgner
, and
O.
Shishkina
, “
Elliptical instability and multiple-roll flow modes of the large-scale circulation in confined turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
125
,
54502
(
2020
).
21.
L.
Zwirner
and
O.
Shishkina
, “
Confined inclined thermal convection in low-Prandtl number fluids
,”
J. Fluid Mech.
850
,
984
(
2018
).
22.
H.
Xia
,
M.
Shats
, and
G.
Falkovich
, “
Spectrally condensed turbulence in thin layers
,”
Phys. Fluids
21
,
125101
(
2009
).
23.
X.
Chen
,
D. P.
Wang
, and
H. D.
Xi
, “
Reduced flow reversals in turbulent convection in the absence of corner vortices
,”
J. Fluid Mech.
891
,
R5
(
2020
).
24.
Z.-H.
Wan
,
Q.
Wang
,
B.
Wang
,
S.-N.
Xia
,
Q.
Zhou
, and
D.-J.
Sun
, “
On non-Oberbeck-Boussinesq effects in Rayleigh-Bénard convection of air for large temperature differences
,”
J. Fluid Mech.
889
,
A10
(
2020
).
25.
V.
Valori
,
G.
Elsinga
,
M.
Rohde
,
M.
Tummers
,
J.
Westerweel
, and
T.
Van Der Hagen
, “
Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection
,”
Phys. Rev. E
95
,
053113
(
2017
).
26.
G.
Ahlers
,
E.
Brown
,
F. F.
Araujo
,
D.
Funfschilling
,
S.
Grossmann
, and
D.
Lohse
, “
Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
569
,
409
(
2006
).
27.
A. D.
Demou
and
D. G.
Grigoriadis
, “
Direct numerical simulations of Rayleigh–Bénard convection in water with non-Oberbeck–Boussinesq effects
,”
J. Fluid Mech.
881
,
1073
(
2019
).
28.
S.
Kashanj
and
D. S.
Nobes
, “
Temperature field of non-Oberbeck–Boussinesq Rayleigh–Bénard convection in a low aspect ratio cell
,”
Phys. Fluids
36
,
047110
(
2024
).
29.
S.
Horn
,
O.
Shishkina
, and
C.
Wagner
, “
On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol
,”
J. Fluid Mech.
724
,
175
(
2013
).
30.
S.
Horn
and
O.
Shishkina
, “
Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection convection in water
,”
Phys. Fluids
26
,
055111
(
2014
).
31.
H.
Yik
,
V.
Valori
, and
S.
Weiss
, “
Turbulent Rayleigh-Bénard convection under strong non-Oberbeck-Boussinesq conditions
,”
Phys. Rev. Fluids
5
(
10
),
103502
(
2020
).
32.
V.
Valori
,
G. E.
Elsinga
,
M.
Rohde
,
J.
Westerweel
, and
T. H.
van Der Hagen
, “
Particle image velocimetry measurements of a thermally convective supercritical fluid
,”
Exp. Fluids
60
,
143
(
2019
).
33.
M.
Bussiére
,
G. M.
Bessa
,
C. R.
Koch
, and
D. S.
Nobes
, “
Application of a combinatorial vortex detection algorithm on 2 component 2 dimensional particle image velocimetry data to characterize the wake of an oscillating wing
,”
Fluids
9
,
53
(
2024
).
34.
M.
Jiang
,
R.
Machiraju
, and
D.
Thompson
, “
Detection and visualization of vortices
,” in
Visualization Handbook
(
Academic Press
,
2005
), p.
295
.
35.
I. A.
Sadarjoen
and
F. H.
Post
, “
Detection, quantification, and tracking of vortices using streamline geometry
,”
Comput. Graph.
24
,
333
(
2000
).
36.
E.
Brown
and
G.
Ahlers
, “
Rotations and cessations of the large-scale circulation in turbulent non-Oberbeck–Boussinesq Rayleigh–Bénard convection
,”
J. Fluid Mech.
568
,
351
(
2006
).
37.
F. F.
Araujo
,
S.
Grossmann
, and
D.
Lohse
, “
Wind reversals in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
95
,
084502
(
2005
).
38.
K.
Sugiyama
,
R.
Ni
,
R. J.
Stevens
,
T. S.
Chan
,
S. Q.
Zhou
,
H. D.
Xi
,
C.
Sun
,
S.
Grossmann
,
K. Q.
Xia
, and
D.
Lohse
, “
Flow reversals in thermally driven turbulence
,”
Phys. Rev. Lett.
105
,
034503
(
2010
).
39.
K. Q.
Xia
,
C.
Sun
, and
S. Q.
Zhou
, “
Particle image velocimetry measurement of the velocity field in turbulent thermal convection
,”
Phys. Rev. E
68
,
066303
(
2003
).
40.
K.
Sugiyama
,
E.
Calzavarini
,
S.
Grossmann
, and
D.
Lohse
, “
Flow organization in two-dimensional non-Oberbeck-Boussinesq Rayleigh-Bénard convection in water
,”
J. Fluid Mech.
637
,
105
(
2009
).
41.
D. D.
Gray
and
A.
Giorgini
, “
The validity of the Boussinesq approximation for liquids and gases
,”
Int. J. Heat Mass Transfer
19
(
5
),
545
551
(
1976
).
You do not currently have access to this content.