Recent advances in quantum hardware and quantum computing algorithms promise significant breakthroughs in computational capabilities. Quantum computers can achieve exponential improvements in speed vs classical computers by employing principles of quantum mechanics like superposition and entanglement. However, designing quantum algorithms to solve the nonlinear partial differential equations governing fluid dynamics is challenging due to the inherent linearity of quantum mechanics, which requires unitary transformation. In this study, we first address in detail several challenges that arise when trying to deal with nonlinearity using quantum algorithms and then propose a novel pure quantum algorithm for solving a nonlinear Burgers' equation. We employed multiple copies of the state vector to calculate the nonlinear term, which is necessary due to the no-cloning theorem. By reusing qubits from the previous time steps, we significantly reduced the number of qubits required for multi-step simulations, from exponential/quadratic scaling in earlier studies to linear scaling in time in the current study. We also employed various advanced quantum techniques, including block-encoding, quantum Hadamard product, and the linear combination of unitaries, to design a quantum circuit for the proposed quantum algorithm. The quantum circuit was executed on quantum simulators, and the obtained results demonstrated excellent agreement with those from classical simulations.

1.
S.
Succi
,
W.
Itani
,
K.
Sreenivasan
, and
R.
Steijl
, “
Quantum computing for fluids: Where do we stand?
,”
Europhys. Lett.
144
,
10001
(
2023
).
2.
A.
Nejadmalayeri
,
A.
Vezolainen
, and
O. V.
Vasilyev
, “
Reynolds number scaling of coherent vortex simulation and stochastic coherent adaptive large eddy simulation
,”
Phys. Fluids
25
,
110823
(
2013
).
3.
N.
Linden
,
A.
Montanaro
, and
C.
Shao
, “
Quantum vs. classical algorithms for solving the heat equation
,”
Commun. Math. Phys.
395
,
601
641
(
2022
).
4.
Y. Y.
Liu
,
Z.
Chen
,
C.
Shu
,
S.-C.
Chew
,
B. C.
Khoo
,
X.
Zhao
, and
Y. D.
Cui
, “
Application of a variational hybrid quantum-classical algorithm to heat conduction equation and analysis of time complexity
,”
Phys. Fluids
34
,
117121
(
2022
).
5.
C.
Sanavio
,
R.
Scatamacchia
,
C.
de Falco
, and
S.
Succi
, “
Three Carleman routes to the quantum simulation of classical fluids
,”
Phys. Fluids
36
,
057143
(
2024
).
6.
W.
Itani
,
K. R.
Sreenivasan
, and
S.
Succi
, “
Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term
,”
Phys. Fluids
36
,
017112
(
2024
).
7.
L.
Budinski
, “
Quantum algorithm for the advection-diffusion equation simulated with the lattice Boltzmann method
,”
Quantum Inf. Process.
20
,
57
(
2021
).
8.
B.
Ljubomir
, “
Quantum algorithm for the Navier–Stokes equations by using the stream function-vorticity formulation and the lattice Boltzmann method
,”
Int. J. Quantum Inf.
20
,
2150039
(
2022
).
9.
M. A.
Schalkers
and
M.
Möller
, “
On the importance of data encoding in quantum Boltzmann methods
,” arXiv:2302.05305 (
2023
).
10.
B. N.
Todorova
and
R.
Steijl
, “
Quantum algorithm for the collisionless Boltzmann equation
,”
J. Comput. Phys.
409
,
109347
(
2020
).
11.
Y.
Cao
,
A.
Papageorgiou
,
I.
Petras
,
J.
Traub
, and
S.
Kais
, “
Quantum algorithm and circuit design solving the Poisson equation
,”
New J. Phys.
15
,
013021
(
2013
).
12.
B.
Daribayev
,
A.
Mukhanbet
, and
T.
Imankulov
, “
Implementation of the HHL algorithm for solving the Poisson equation on quantum simulators
,”
Appl. Sci.
13
,
11491
(
2023
).
13.
S.
Wang
,
Z.
Wang
,
W.
Li
,
L.
Fan
,
Z.
Wei
, and
Y.
Gu
, “
Quantum fast Poisson solver: The algorithm and complete and modular circuit design
,”
Quantum Inf. Process.
19
,
1
25
(
2020
).
14.
P.
Brearley
and
S.
Laizet
, “
A quantum algorithm for solving the advection equation using Hamiltonian simulation
,” arXiv:2312.09784 (
2023
).
15.
J.
Ingelmann
,
S. S.
Bharadwaj
,
P.
Pfeffer
,
K. R.
Sreenivasan
, and
J.
Schumacher
, “
Two quantum algorithms for solving the one-dimensional advection-diffusion equation
,” arXiv:2401.00326 (
2023
).
16.
R.
Demirdjian
,
D.
Gunlycke
,
C. A.
Reynolds
,
J. D.
Doyle
, and
S.
Tafur
, “
Variational quantum solutions to the advection-diffusion equation for applications in fluid dynamics
,”
Quantum Inf. Process.
21
,
322
(
2022
).
17.
J.
Yepez
, “
An efficient quantum algorithm for the one-dimensional Burgers equation
,” arXiv:quant-ph/0210092 (
2002
).
18.
F.
Gaitan
, “
Finding flows of a Navier–Stokes fluid through quantum computing
,”
npj Quantum Inf.
6
(
1
),
61
(
2020
).
19.
F.
Gaitan
, “
Finding Solutions of the Navier‐Stokes equations through quantum computing—Recent progress, a generalization, and next steps forward
,”
Adv. Quantum Technol.
4
,
2100055
(
2021
).
20.
X.
Rao
, “
Performance study of variational quantum linear solver with an improved ansatz for reservoir flow equations
,”
Phys. Fluids
36
,
047104
(
2024
).
21.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2010
).
22.
D.
Ahn
, “
Non-Markovian cost function for quantum error mitigation with Dirac Gamma matrices representation
,”
Sci. Rep.
13
,
20069
(
2023
).
23.
J.-H.
Bae
,
P. M.
Alsing
,
D.
Ahn
, and
W. A.
Miller
, “
Quantum circuit optimization using quantum Karnaugh map
,”
Sci. Rep.
10
,
15651
(
2020
).
24.
B.
Park
and
D.
Ahn
, “
Reducing CNOT count in quantum Fourier transform for the linear nearest-neighbor architecture
,”
Sci. Rep.
13
,
8638
(
2023
).
25.
P. W.
Shor
, “
Algorithms for quantum computation: Discrete logarithms and factoring
,” in
Proceedings 35th Annual Symposium on Foundations of Computer Science
,
IEEE
,
1994
.
26.
A.
Luis
and
J.
Peřina
, “
Optimum phase-shift estimation and the quantum description of the phase difference
,”
Phys. Rev. A
54
,
4564
(
1996
).
27.
D.
Coppersmith
, “
An approximate Fourier transform useful in quantum factoring
,” arXiv:quant-ph/0201067 (
2002
).
28.
G.
Brassard
,
P.
Hoyer
,
M.
Mosca
, and
A.
Tapp
, “
Quantum amplitude amplification and estimation
,”
Contemp. Math.
305
,
53
74
(
2002
).
29.
A. W.
Harrow
,
A.
Hassidim
, and
S.
Lloyd
, “
Quantum algorithm for linear systems of equations
,”
Phys. Rev. Lett.
103
,
150502
(
2009
).
30.
D. W.
Berry
, “
High-order quantum algorithm for solving linear differential equations
,”
J. Phys. A: Math. Theor.
47
,
105301
(
2014
).
31.
D. W.
Berry
,
A. M.
Childs
,
A.
Ostrander
, and
G.
Wang
, “
Quantum algorithm for linear differential equations with exponentially improved dependence on precision
,”
Commun. Math. Phys.
356
,
1057
1081
(
2017
).
32.
A. M.
Childs
,
J.-P.
Liu
, and
A.
Ostrander
, “
High-precision quantum algorithms for partial differential equations
,”
Quantum
5
,
574
(
2021
).
33.
S. K.
Leyton
and
T. J.
Osborne
, “
A quantum algorithm to solve nonlinear differential equations
,” arXiv:0812.4423 (
2008
).
34.
S.
Lloyd
,
G.
De Palma
,
C.
Gokler
,
B.
Kiani
,
Z.-W.
Liu
,
M.
Marvian
,
F.
Tennie
, and
T.
Palmer
, “
Quantum algorithm for nonlinear differential equations
,” arXiv:2011.06571 (
2020
).
35.
Z.
Meng
and
Y.
Yang
, “
Quantum computing of fluid dynamics using the hydrodynamic Schrödinger equation
,”
Phys. Rev. Res.
5
,
033182
(
2023
).
36.
S.
Riva
,
C.
Introini
, and
A.
Cammi
, “
A finite element implementation of the incompressible Schrödinger flow method
,”
Phys. Fluids
36
,
017138
(
2024
).
37.
B.
Kacewicz
, “
Almost optimal solution of initial-value problems by randomized and quantum algorithms
,”
J. Complexity
22
,
676
690
(
2006
).
38.
F.
Oz
,
R. K.
Vuppala
,
K.
Kara
, and
F.
Gaitan
, “
Solving Burgers' equation with quantum computing
,”
Quantum Inf. Process.
21
,
30
(
2022
).
39.
B.
Basu
,
S.
Gurusamy
, and
F.
Gaitan
, “
A quantum algorithm for computing dispersal of submarine volcanic tephra
,”
Phys. Fluids
36
,
036607
(
2024
).
40.
J.-P.
Liu
,
H. Ø.
Kolden
,
H. K.
Krovi
,
N. F.
Loureiro
,
K.
Trivisa
, and
A. M.
Childs
, “
Efficient quantum algorithm for dissipative nonlinear differential equations
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2026805118
(
2021
).
41.
R.
Steijl
, “
Quantum circuit implementation of multi-dimensional non-linear lattice models
,”
Appl. Sci.
13
,
529
(
2022
).
42.
M.
Lubasch
,
J.
Joo
,
P.
Moinier
,
M.
Kiffner
, and
D.
Jaksch
, “
Variational quantum algorithms for nonlinear problems
,”
Phys. Rev. A
101
,
010301
(
2020
).
43.
R.
Steijl
, “Quantum algorithms for nonlinear equations in fluid mechanics,” in
Quantum Computing and Communications
(
IntechOpen
,
2020
).
44.
N. T. P.
Le
,
H.
Xiao
, and
R. S.
Myong
, “
A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases
,”
J. Comput. Phys.
273
,
160
184
(
2014
).
45.
R. S.
Myong
, “
Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows
,”
Phys. Fluids
11
,
2788
2802
(
1999
).
46.
J.
Bec
and
K.
Khanin
, “
Burgers turbulence
,”
Phys. Rep.
447
,
1
66
(
2007
).
47.
O.
Ejtehadi
,
T. K.
Mankodi
,
I.
Sohn
,
B. J.
Kim
, and
R. S.
Myong
, “
Gas-particle flows in a microscale shock tube and collection efficiency in the jet impingement on a permeable surface
,”
Phys. Fluids
35
,
103324
(
2023
).
48.
R. S.
Myong
, “
Analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework
,”
AIAA J.
52
,
1075
1081
(
2014
).
49.
I. F.
Araujo
,
D. K.
Park
,
F.
Petruccione
, and
A. J.
da Silva
, “
A divide-and-conquer algorithm for quantum state preparation
,”
Sci. Rep.
11
,
6329
(
2021
).
50.
D.
Camps
,
L.
Lin
,
R.
Van Beeumen
, and
C.
Yang
,
Explicit quantum circuits for block encodings of certain sparse matrices
, arXiv:2203.10236 (
2022
).
51.
G.
Hao Low
and
N.
Wiebe
, “
Hamiltonian simulation in the interaction picture
,” arXiv:1805.00675 (
2018
).
You do not currently have access to this content.