This paper presents an investigation aimed at enhancing the snow resistance of bogies in a three-car grouped alpine high-speed train (HST) that operates in a snowy region. The study employs a combination of the unsteady Reynolds-averaged Navier–Stokes model, coupled with the discrete phase model. This modeling approach has been validated through wind tunnel tests, including flow field tests, two-phase flow tests, and snow-ice tests. The study comprehensively compares the characteristics of the wind-snow flow, spatial snow concentration, and the distribution of snow on the train's underbody between two scenarios: the original train's underbody structure and the multifactor collaborative optimization scheme (MCOS). The results indicate that the MCOS case facilitates the escape of snow particles from the bogie cavities by weakening the upward and reverse flows. Furthermore, the MCOS case significantly reduces the concentration of snow particles around the heat-producing elements and decreases the accumulation of snow on both the lower and upper surfaces of the bogies. As a result, it reduces snow accumulation on the bogies by 50.6%, 56.4%, 60.8%, and 62.4% at train speeds of 200, 250, 300, and 350 km/h, respectively. In summary, this research provides valuable insights for improving the snow resistance of HSTs operating in snowy regions, with potential applications in enhancing railway transportation safety and efficiency.

1.
Allain
,
E.
,
Paradot
,
N.
,
Ribourg
,
M.
,
Delpech
,
P.
,
Bouchet
,
J. P.
,
De La Casa
,
X.
, and
Pauline
,
J.
, “
Experimental and numerical study of snow accumulation on a high-speed train
,” in
49th International Symposium of Applied Aerodynamics, Lille
(L'Association Aéronautique et Astronautique de France,
2014
), pp.
24
25
.
2.
Deuce
,
R.
,
Ekberg
,
A.
, and
Kabo
,
E.
, “
Mechanical deterioration of wheels and rails under winter conditions–mechanisms and consequences
,”
Proc. Inst. Mech. Eng., Part F
233
(
6
),
640
648
(
2019
).
3.
Dong
,
T.
,
Minelli
,
G.
,
Wang
,
J. B.
,
Liang
,
X.
, and
Krajnović
,
S.
, “
The effect of ground clearance on the aerodynamics of a generic high-speed train
,”
J. Fluid Struct.
95
,
102990
(
2020a
).
4.
Dong
,
T.
,
Minelli
,
G.
,
Wang
,
J.
,
Liang
,
X.
, and
Krajnović
,
S.
, “
The effect of reducing the underbody clearance on the aerodynamics of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
204
,
104249
(
2020b
).
5.
European Committee for Standardization
, “
Railway applications—Environmental conditions—Design guidance for rolling stock
,” CEN/TR 16251 (CEN,
2016
).
6.
Fluent Inc.
,
Fluent user's guide
,
2011
.
7.
Gao
,
G.
,
Zhang
,
Y.
,
Xie
,
F.
,
Zhang
,
J.
,
He
,
K.
,
Wang
,
J.
, and
Zhang
,
Y.
, “
Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model
,”
Proc. Inst. Mech. Eng., Part F
233
(
2
),
141
159
(
2019
).
8.
Gao
,
G.
,
Tian
,
Z.
,
Wang
,
J.
,
Zhang
,
Y.
,
Su
,
X.
, and
Zhang
,
J.
, “
Optimization of the anti-snow performance of a high-speed train based on passive flow control
,”
Wind Struct.
30
(
4
),
325
338
(
2020a
).
9.
Gao
,
G. J.
,
Zhang
,
Y.
, and
Wang
,
J. B.
, “
Numerical and experimental investigation on snow accumulation on bogies of high-speed trains
,”
J. Cent. South Univ.
27
(
4
),
1039
1053
(
2020b
).
10.
Gosman
,
A.
and
Ioannides
,
E.
, “
Aspects of computer simulation of liquid-fueled combustors
,”
J. Energy
7
(
6
),
482
490
(
1983
).
11.
Guan
,
H. Y.
and
Tu
,
J. Y.
,
Computational Techniques for Multi-Phase Flows
(
Elsevier
,
Amsterdam
,
2010
).
12.
Han
,
L. W.
,
Cai
,
H. C.
,
Cheng
,
J.
,
Zhao
,
X. Q.
, and
Jiang
,
K.
, “
Freezing and thawing characteristics of seasonal frozen soil along Moscow–Kazan High-Speed Railway
,”
J. Traffic Transp. Eng.
18
(
3
),
44
55
(
2018
).
13.
Kloow
,
L.
,
High-Speed Train Operation in Winter Climate
(
KTH Railway Group Publication
,
Stockholm, Sweden
,
2011
), pp.
1
2
(in English).
14.
Liu
,
M.
,
Wang
,
J.
,
Zhu
,
H.
,
Krajnovic
,
S.
, and
Gao
,
G.
, “
A numerical study of snow accumulation on the bogies of high-speed trains based on coupling improved delayed detached eddy simulation and discrete phase model
,”
Proc. Inst. Mech. Eng., Part F
233
(
7
),
715
730
(
2019
).
15.
Loponen
,
T. R.
,
Salmenperä
,
P.
,
Luomala
,
H.
, and
Nurmikolu
,
A.
, “
Studies of snow-dropping from a train on a turnout due to dynamic excitations
,”
J. Cold Reg. Eng.
32
(
2
),
04018003
(
2018
).
16.
Morden
,
J. A.
,
Hemida
,
H.
, and
Baker
,
C. J.
, “
Comparison of RANS and detached eddy simulation results to wind-tunnel data for the surface pressures upon a class 43 high-speed train
,”
J. Fluids Eng.
137
(
4
),
041108
(
2015
).
17.
Morsi
,
S. A.
and
Alexander
,
A. J.
, “
An investigation of particle trajectories in two-phase systems
,”
J. Fluid Mech.
55
(
2
),
193
208
(
1972
).
18.
Ni
,
J. R.
and
Li
,
Z. S.
,
Wind Blowing Sand Two-Phase Flow Theory and Its Application
(
Science Press
,
Beijing
,
2006
).
19.
Quinn
,
A. D.
,
Hayward
,
M.
,
Baker
,
C. J.
,
Schmid
,
F.
,
Priest
,
J. A.
, and
Powrie
,
W.
, “
A full-scale experimental and modelling study of ballast flight under high-speed trains
,”
Proc. Inst. Mech. Eng., Part F
224
(
2
),
61
74
(
2010
).
20.
Spalding
,
D. B.
,
Numerical Computation of Multi-Phase Flows: A Course of Twelve Lectures and Computer Workshops
(
Von Karman Inst. Fluid Dyn. Numer. Computation Multi-Phase Flows
,
1981
), pp.
1
118
.
21.
Versteeg
,
H. K.
,
An Introduction to Computational Fluid Dynamics the Finite Volume Method, 2/E
(
Pearson Education India
,
2007
).
22.
Wang
,
S.
,
Bell
,
J. R.
,
Burton
,
D.
,
Herbst
,
A. H.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
, “
The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream
,”
J. Wind Eng. Ind. Aerodyn.
165
,
46
57
(
2017
).
23.
Wang
,
J.
,
Zhang
,
J.
,
Xie
,
F.
,
Zhang
,
Y.
, and
Gao
,
G.
, “
A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train
,”
Cold Regions Sci. Technol.
148
,
121
130
(
2018a
).
24.
Wang
,
J. B.
,
Gao
,
G. J.
,
Liu
,
M. Y.
et al, “
Numerical study of snow accumulation on the bogies of a high-speed train using URANS coupled with discrete phase model
,”
J. Wind Eng. Ind. Aerodyn.
183
,
295
314
(
2018b
).
25.
Wang
,
J. B.
,
Zhang
,
J.
,
Zhang
,
Y.
et al, “
Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains
,”
J. Wind Eng. Ind. Aerodyn.
176
,
211
224
(
2018c
).
26.
Wang
,
J.
,
Zhang
,
J.
,
Zhang
,
Y.
,
Liang
,
X.
,
Krajnovic
,
S.
, and
Gao
,
G.
, “
Impact of rotation of wheels and bogie cavity shapes on snow accumulating on the bogies of high-speed trains
,”
Cold Regions Sci. Technol.
159
,
58
70
(
2019
).
27.
Wang
,
J.
,
Zhang
,
Y.
,
Zhang
,
J.
,
Liang
,
X.
,
Krajnović
,
S.
, and
Gao
,
G.
, “
A numerical investigation on the improvement of anti-snow performance of the bogies of a high-speed train
,”
Proc. Inst. Mech. Eng., Part F
234
(
10
),
1319
1334
(
2020
).
28.
Wang
,
Y.
,
Wang
,
T.
,
Jiang
,
C.
et al, “
Numerical study on slipstream-induced snow drifting and accumulation in the bogie region of a high-speed train passing the snowy ballast bed
,”
J. Wind Eng. Ind. Aerodyn.
232
,
105269
(
2023
).
29.
Xia
,
C.
,
Wang
,
H. F.
,
Shan
,
X. Z.
,
Yang
,
Z. G.
, and
Li
,
Q. L.
, “
Effects of ground configurations on the slipstream and near wake of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
168
,
177
189
(
2017a
).
30.
Xia
,
C.
,
Shan
,
X.
, and
Yang
,
Z.
, “
Detached-eddy simulation of ground effect on the wake of a high-speed train
,”
J. Fluids Eng.
139
(
5
),
051101
(
2017b
).
31.
Xie
,
F.
,
Zhang
,
J.
,
Gao
,
G.
,
He
,
K.
,
Zhang
,
Y.
, and
Wang
,
J.
, “
Study of snow accumulation on a high-speed train's bogies based on the discrete phase model
,”
J. Appl. Fluid Mech.
10
(
6
),
1729
1745
(
2017
).
32.
Zhang
,
Y.
,
Wang
,
J.
,
Jiang
,
C.
,
Zhang
,
J.
,
Wang
,
T.
, and
Gao
,
G.
, “
Investigation of ice and snow accumulations on the bogie areas of high-speed trains using ice wind tunnel experiments
,”
Cold Regions Sci. Technol.
199
,
103560
(
2022
).
You do not currently have access to this content.