This study conducts a comprehensive analysis of the coherent structures within a spatially developing underexpanded axisymmetric jet at a Reynolds number of 45 000, utilizing high-fidelity implicit large eddy simulations (iLES) in conjunction with spectral proper orthogonal decomposition (SPOD). In the frequency–wavenumber space, the global SPOD analysis identifies three distinct coherent structures, corresponding to three different mechanisms, namely, Kelvin–Helmholtz (KH), Orr, and lift-up. Their salient characteristics are discussed in detail. Local SPOD analysis further explores the streamwise evolution of these coherent structures, revealing that the influence of KH mechanism is confined to the near field, while the lift-up mechanism persists and dominates the energy content beyond the potential core, with the streaks of azimuthal wavenumbers one and two being the most energetic. The reconstruction of turbulent kinetic energy (TKE) and Reynolds shear stress from SPOD modes is assessed, and the first few azimuthal modes with low wavenumbers and frequencies are found crucial for capturing the dominant features of the flow. It is found that only the m = 0 and m = 1 modes contribute to the TKE at the centerline. The Reynolds shear stress reconstruction quality is comparable to TKE, but with a negligible contribution from the m = 0 mode. The azimuthal mode m = 1 captures the slope of the actual Reynolds shear stress profile in the vicinity of centerline, while m = 2 and higher modes capture the peak location of the actual profile.

1.
A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1976
).
2.
G. L.
Brown
and
A.
Roshko
, “
On density effects and large structure in turbulent mixing layers
,”
J. Fluid Mech.
64
,
775
816
(
1974
).
3.
A. V.
Cavalieri
,
P.
Jordan
, and
L.
Lesshafft
, “
Wave-packet models for jet dynamics and sound radiation
,”
Appl. Mech. Rev.
71
,
020802
(
2019
).
4.
E.
Mollo-Christensen
, “
Jet noise and shear flow instability seen from an experimenter's viewpoint
,”
J. Appl. Mech.
34
,
1
(
1967
).
5.
S. C.
Crow
and
F.
Champagne
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
591
(
1971
).
6.
M.
Breda
and
O. R.
Buxton
, “
Influence of coherent structures on the evolution of an axisymmetric turbulent jet
,”
Phys. Fluids
30
,
035109
(
2018
).
7.
R.
Camussi
and
G.
Guj
, “
Experimental analysis of intermittent coherent structures in the near field of a high re turbulent jet flow
,”
Phys. Fluids
11
,
423
431
(
1999
).
8.
S.
Aydore
and
P.
Disimile
, “
Natural coherent structure dynamics in near field of fully turbulent axisymmetric jet
,”
AIAA J.
35
,
1171
1178
(
1997
).
9.
K.
Oberleithner
,
M.
Sieber
,
C. N.
Nayeri
,
C. O.
Paschereit
,
C.
Petz
,
H.-C.
Hege
,
B. R.
Noack
, and
I.
Wygnanski
, “
Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: Stability analysis and empirical mode construction
,”
J. Fluid Mech.
679
,
383
414
(
2011
).
10.
Z.
Zhang
and
X.
Wu
, “
A unified theory for the envelope radiation of ring-mode coherent structures in the very-near-nozzle and developed regions of a circular jet
,”
Phys. Fluids
35
,
014113
(
2023
).
11.
P.
Jordan
and
T.
Colonius
, “
Wave packets and turbulent jet noise
,”
Annu. Rev. Fluid Mech.
45
,
173
195
(
2013
).
12.
C. K.
Tam
and
F. Q.
Hu
, “
On the three families of instability waves of high-speed jets
,”
J. Fluid Mech.
201
,
447
483
(
1989
).
13.
P. K.
Ray
,
L. C.
Cheung
, and
S. K.
Lele
, “
On the growth and propagation of linear instability waves in compressible turbulent jets
,”
Phys. Fluids
21
,
054106
(
2009
).
14.
K.
Gudmundsson
and
T.
Colonius
, “
Instability wave models for the near-field fluctuations of turbulent jets
,”
J. Fluid Mech.
689
,
97
128
(
2011
).
15.
D.
Rodríguez
,
A.
Sinha
,
G. A.
Bres
, and
T.
Colonius
, “
Inlet conditions for wave packet models in turbulent jets based on eigenmode decomposition of large eddy simulation data
,”
Phys. Fluids
25
,
105107
(
2013
).
16.
D.
Rodríguez
,
A. V.
Cavalieri
,
T.
Colonius
, and
P.
Jordan
, “
A study of linear wavepacket models for subsonic turbulent jets using local eigenmode decomposition of PIV data
,”
Eur. J. Mech. B. Fluids
49
,
308
321
(
2015
).
17.
A.
Sinha
,
D.
Rodríguez
,
G. A.
Brès
, and
T.
Colonius
, “
Wavepacket models for supersonic jet noise
,”
J. Fluid Mech.
742
,
71
95
(
2014
).
18.
A.
Towne
and
T.
Colonius
, “
One-way spatial integration of hyperbolic equations
,”
J. Comput. Phys.
300
,
844
861
(
2015
).
19.
P. A.
Nogueira
,
A. V.
Cavalieri
,
P.
Jordan
, and
V.
Jaunet
, “
Large-scale streaky structures in turbulent jets
,”
J. Fluid Mech.
873
,
211
237
(
2019
).
20.
L.
Lesshafft
,
O.
Semeraro
,
V.
Jaunet
,
A. V.
Cavalieri
, and
P.
Jordan
, “
Resolvent-based modeling of coherent wave packets in a turbulent jet
,”
Phys. Rev. Fluids
4
,
063901
(
2019
).
21.
E.
Pickering
,
G.
Rigas
,
P. A.
Nogueira
,
A. V.
Cavalieri
,
O. T.
Schmidt
, and
T.
Colonius
, “
Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets
,”
J. Fluid Mech.
896
,
A2
(
2020
).
22.
E.
Pickering
,
Resolvent Modeling of Turbulent Jets
(
California Institute of Technology
,
2021
).
23.
I. A.
Maia
,
L.
Heidt
,
E.
Pickering
,
T.
Colonius
,
P.
Jordan
, and
G. A.
Brès
, “
The effect of flight on a turbulent jet: Coherent structure education and resolvent analysis
,”
J. Fluid Mech.
985
,
A21
(
2024
).
24.
D.
Crighton
and
M.
Gaster
, “
Stability of slowly diverging jet flow
,”
J. Fluid Mech.
77
,
397
413
(
1976
).
25.
X.
Garnaud
,
L.
Lesshafft
,
P.
Schmid
, and
P.
Huerre
, “
The preferred mode of incompressible jets: Linear frequency response analysis
,”
J. Fluid Mech.
716
,
189
202
(
2013
).
26.
O. T.
Schmidt
,
A.
Towne
,
G.
Rigas
,
T.
Colonius
, and
G. A.
Bres
, “
Spectral analysis of jet turbulence
,”
J. Fluid Mech.
855
,
953
982
(
2018
).
27.
A. J.
Smits
,
B. J.
McKeon
, and
I.
Marusic
, “
High–Reynolds number wall turbulence
,”
Annu. Rev. Fluid Mech.
43
,
353
375
(
2011
).
28.
L.
Brandt
, “
The lift-up effect: The linear mechanism behind transition and turbulence in shear flows
,”
Eur. J. Mech. B. Fluids
47
,
80
96
(
2014
).
29.
D.
Liepmann
and
M.
Gharib
, “
The role of streamwise vorticity in the near-field entrainment of round jets
,”
J. Fluid Mech.
245
,
643
668
(
1992
).
30.
V. V.
Kozlov
,
G. R.
Grek
,
L.
Lofdahl
,
V. G.
Chernorai
, and
M. V.
Litvinenko
, “
Role of localized streamwise structures in the process of transition to turbulence in boundary layers and jets
,”
J. Appl. Mech. Tech. Phys.
43
,
224
236
(
2002
).
31.
D.
Jung
,
S.
Gamard
, and
W. K.
George
, “
Downstream evolution of the most energetic modes in a turbulent axisymmetric jet at high Reynolds number. Part 1. The near-field region
,”
J. Fluid Mech.
514
,
173
204
(
2004
).
32.
J. I.
Jimenez-Gonzalez
and
P.
Brancher
, “
Transient energy growth of optimal streaks in parallel round jets
,”
Phys. Fluids
29
,
114101
2017
).
33.
Q.
Chevalier
,
C. M.
Douglas
, and
L.
Lesshafft
, “
Resolvent analysis of swirling turbulent jets
,”
Theor. Comput. Fluid Dyn.
38
,
641
(
2024
).
34.
J. L.
Lumley
, “
The structure of inhomogeneous turbulent flows
,” in
Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation
, edited by
A. M.
Yaglam
and
V. I.
Tatarsky
(
Doklady Akademii Nauk SSSR
,
Moscow
,
1967
), pp. 166–178.
35.
O. T.
Schmidt
and
T.
Colonius
, “
Guide to spectral proper orthogonal decomposition
,”
AIAA J.
58
,
1023
1033
(
2020
).
36.
A.
Kumar
and
S.
Sahu
, “
Large scale instabilities in coaxial air-water jets with annular air swirl
,”
Phys. Fluids
31
,
124103
(
2019
).
37.
D.
Barreiro-Villaverde
,
A.
Gosset
, and
M. A.
Mendez
, “
On the dynamics of jet wiping: Numerical simulations and modal analysis
,”
Phys. Fluids
33
,
062114
(
2021
).
38.
J.
Cao
,
P.
Wang
, and
Y.
Liu
, “
Influence of dual purging jets on interferometric measurement of optical path difference
,”
Phys. Fluids
36
,
015108
(
2024
).
39.
F.
Margnat
,
V.
Ioannou
, and
S.
Laizet
, “
A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data
,”
C. R. Méc.
346
,
903
918
(
2018
).
40.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
97
,
414
443
(
1991
).
41.
J.-L.
Guermond
and
J.
Shen
, “
Velocity-correction projection methods for incompressible flows
,”
SIAM J. Numer. Anal.
41
,
112
134
(
2003
).
42.
S.
Dong
,
G. E.
Karniadakis
, and
C.
Chryssostomidis
, “
A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains
,”
J. Comput. Phys.
261
,
83
105
(
2014
).
43.
H. M.
Blackburn
and
S. J.
Sherwin
, “
Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries
,”
J. Comput. Phys.
197
,
759
778
(
2004
).
44.
R. C.
Moura
,
S. J.
Sherwin
, and
J.
Peiró
, “
Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods
,”
J. Comput. Phys.
298
,
695
710
(
2015
).
45.
R. C.
Moura
,
M.
Aman
,
J.
Peiró
, and
S. J.
Sherwin
, “
Spatial eigenanalysis of spectral/hp continuous Galerkin schemes and their stabilisation via DG-mimicking spectral vanishing viscosity for high Reynolds number flows
,”
J. Comput. Phys.
406
,
109112
(
2020
).
46.
G.
Mengaldo
,
D.
Moxey
,
M.
Turner
,
R. C.
Moura
,
A.
Jassim
,
M.
Taylor
,
J.
Peiro
, and
S. J.
Sherwin
, “
Industry-relevant implicit large-eddy simulation of a high-performance road car via spectral/hp element methods
,” arXiv:2009.10178 (
2020
).
47.
E.
Tadmor
, “
Convergence of spectral methods for nonlinear conservation laws
,”
SIAM J. Numer. Anal.
26
,
30
744
(
1989
).
48.
Y.
Maday
,
S. M. O.
Kaber
, and
E.
Tadmor
, “
Legendre pseudospectral viscosity method for nonlinear conservation laws
,”
SIAM J. Numer. Anal.
30
,
321
342
(
1993
).
49.
C.
Xu
and
R.
Pasquetti
, “
Stabilized spectral element computations of high Reynolds number incompressible flows
,”
J. Comput. Phys.
196
,
680
704
(
2004
).
50.
K.
Koal
,
J.
Stiller
, and
H. M.
Blackburn
, “
Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations
,”
J. Comput. Phys.
231
,
3389
3405
(
2012
).
51.
E.
Ferrer
,
N.
Saito
,
H.
Blackburn
, and
D.
Pullin
, “
High-Reynolds-number wall-modelled large eddy simulations of turbulent pipe flows using explicit and implicit subgrid stress treatments within a spectral element solver
,”
Comput. Fluids
191
,
104239
(
2019
).
52.
P.
Welch
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
,
70
73
(
1967
).
53.
A.
Towne
,
O. T.
Schmidt
, and
T.
Colonius
, “
Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
,”
J. Fluid Mech.
847
,
821
867
(
2018
).
54.
A.
Nekkanti
and
O. T.
Schmidt
, “
Frequency–time analysis, low-rank reconstruction and denoising of turbulent flows using spod
,”
J. Fluid Mech.
926
,
A26
(
2021
).
55.
M.
Samie
,
V.
Aparece-Scutariu
,
P.
Lavoie
,
D-h
Shin
, and
A.
Pollard
, “
Three-dimensional large-scale and very-large-scale coherent structures in a turbulent axisymmetric jet
,”
J. Fluid Mech.
948
,
A29
(
2022
).
56.
M.
Samie
,
P.
Lavoie
, and
A.
Pollard
, “
Quantifying eddy structures and very-large-scale motions in turbulent round jets
,”
J. Fluid Mech.
916
,
A2
(
2021
).
57.
G.
Eitel-Amor
,
R.
Örlü
, and
P.
Schlatter
, “
Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 8300
,”
Int. J. Heat Fluid Flow
47
,
57
69
(
2014
).
58.
A. V.
Cavalieri
,
D.
Rodríguez
,
P.
Jordan
,
T.
Colonius
, and
Y.
Gervais
, “
Wavepackets in the velocity field of turbulent jets
,”
J. Fluid Mech.
730
,
559
592
(
2013
).
59.
S.
Nidhan
,
K.
Chongsiripinyo
,
O. T.
Schmidt
, and
S.
Sarkar
, “
Spectral proper orthogonal decomposition analysis of the turbulent wake of a disk at Re = 50 000
,”
Phys. Rev. Fluids
5
,
124606
(
2020
).
60.
J.
Kim
and
H.
Choi
, “
Large eddy simulation of a circular jet: Effect of inflow conditions on the near field
,”
J. Fluid Mech.
620
,
383
411
(
2009
).
You do not currently have access to this content.