Centrifugal pumps are essential components in various industrial applications, where their stable and efficient operation is critical. The impeller, a key part of these pumps, plays a pivotal role in energy conversion; thus, any fracture in its blades can significantly impact the pump's performance. This study investigates the effects of a single-blade trailing edge fracture on the flow characteristics of a centrifugal pump, aiming to provide insights into fault diagnosis and performance optimization. By employing a combination of experimental analysis and numerical simulation, the study analyzes changes in pump performance, pressure distribution, vortex structures, entropy production, blade loading, transient radial force, and pressure pulsation. The results indicate that minor blade fractures have minimal impact on the pump's head and efficiency, while severe fractures cause a noticeable decrease in head across all flow rates, with efficiency remaining relatively stable at low-flow rates. Transient analyses reveal that blade fractures alter the distribution and magnitude of radial forces, leading to changes in pressure pulsation characteristics, with the shaft passing frequency amplitude increasing and gradually surpassing the blade passing frequency amplitude. These findings provide important references for diagnosing fluid-induced centrifugal pump failures, effectively enabling the extraction of hydraulic features to optimize the fault diagnosis process.

1.
A. S. V.
Kalaiselvan
,
U.
Subramaniam
,
P.
Shanmugam
, and
N.
Hanigovszki
, “
A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system
,”
Appl. Energy
181
,
495
(
2016
).
2.
Q.
Fu
,
F.
Zhang
,
R. S.
Zhu
, and
B.
He
, “
A systematic investigation on flow characteristics of impeller passage in a nuclear centrifugal pump under cavitation state
,”
Ann. Nucl. Energy
97
,
190
(
2016
).
3.
T. Y.
Li
,
S. P.
Wang
,
E.
Zio
,
J.
Shi
, and
Z. H.
Ma
, “
A numerical approach for predicting the remaining useful life of an aviation hydraulic pump based on monitoring abrasive debris generation
,”
Mech. Syst. Signal Proc.
136
,
13
(
2020
).
4.
J.
Patra
,
N. K.
Pandey
,
U. K.
Muduli
,
R.
Natarajan
, and
J. B.
Joshi
, “
Hydrodynamic study of flow in the rotor region of annular centrifugal contactors using CFD simulation
,”
Chem. Eng. Commun.
200
,
471
(
2013
).
5.
W. X.
Ye
,
C.
Geng
, and
X. W.
Luo
, “
Unstable flow characteristics in vaneless region with emphasis on the rotor-stator interaction for a pump turbine at pump mode using large runner blade lean
,”
Renewable Energy
185
,
1343
(
2022
).
6.
X.
Jia
,
Y.
Li
,
J.
Zhang
,
C.
Yan
,
Z.
Lin
, and
Z.
Zhu
, “
Research on the effects of volute area ratios on centrifugal pump internal flow and noise
,”
Phys. Fluids
36
,
075111
(
2024
).
7.
C.
An
,
H.
Li
,
Y.
Chen
,
R.
Zhu
,
Q.
Fu
, and
X.
Wang
, “
Research on flow resistance characteristics of reactor coolant pump under large break LOCA at inlet
,”
Nucl. Eng. Des.
395
,
111856
(
2022
).
8.
Z. F.
Xu
,
F. Y.
Kong
,
L. F.
Tang
,
M. W.
Liu
,
J. Q.
Wang
, and
N.
Qiu
, “
Effect of blade thickness on internal flow and performance of a plastic centrifugal pump
,”
Machines
10
,
61
(
2022
).
9.
W.
Ostachowicz
and
M.
Krawczuk
, “
Analysis of the effect of cracks on the natural frequencies of a cantilever beam
,”
J. Sound Vib.
150
,
191
(
1991
).
10.
J.
Wauer
,
Vibrations of Cracked Rotating Blades
(
Springer
,
London
,
2012
).
11.
V.
Muralidharan
,
V.
Sugumaran
, and
N. R.
Sakthivel
, “
Wavelet decomposition and support vector machine for fault diagnosis of monoblock centrifugal pump
,”
Int. J. Data Anal. Tech. Strategies
3
,
159
177
(
2011
).
12.
N. R.
Sakthivel
,
B. B.
Nair
,
M.
Elangovan
,
V.
Sugumaran
, and
S.
Saravanmurugan
, “
Comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals
,”
Eng. Sci. Technol.
17
,
30
(
2014
).
13.
N. R.
Sakthivel
,
V.
Sugumaran
, and
S.
Babudevasenapati
, “
Vibration based fault diagnosis of monoblock centrifugal pump using decision tree
,”
Expert Syst. Appl.
37
,
4040
(
2010
).
14.
N. R.
Sakthivel
,
V.
Sugumaran
, and
B. B.
Nair
, “
Comparison of decision tree-fuzzy and rough set-fuzzy methods for fault categorization of mono-block centrifugal pump
,”
Mech. Syst. Signal Proc.
24
,
1887
(
2010
).
15.
L.
Dong
,
K.
Wu
,
J. C.
Zhu
,
C.
Dai
,
L. X.
Zhang
, and
J. N.
Guo
, “
Cavitation detection in centrifugal pump based on interior flow-borne noise using WPD-PCA-RBF
,”
Shock Vib.
2019
,
12
.
16.
H.
Wang
and
P.
Chen
, “
Sequential condition diagnosis for centrifugal pump system using fuzzy neural network
,”
Neural Inf. Process.-Lett. Rev.
11
,
41
(
2007
).
17.
H. Q.
Wang
and
P.
Chen
, “
Intelligent diagnosis method for a centrifugal pump using features of vibration signals
,”
Neural Comput. Appl.
18
,
397
(
2009
).
18.
M. M.
Stopa
,
B. J.
Cardoso
, and
C. B.
Martinez
, “
Incipient detection of cavitation phenomenon in centrifugal pumps
,”
IEEE Trans. Ind. Appl.
50
,
120
(
2014
).
19.
C. S.
Wu
,
K. X.
Pu
,
P. L.
Shi
,
P.
Wu
,
B.
Huang
, and
D. Z.
Wu
, “
Blade redesign based on secondary flow suppression to improve the dynamic performance of a centrifugal pump
,”
J. Sound Vib.
554
,
117689
(
2023
).
20.
Z. C.
Zhang
,
H. X.
Chen
,
Z.
Ma
,
J. W.
He
,
H.
Liu
, and
C.
Liu
, “
Research on improving the dynamic performance of centrifugal pumps with twisted gap drainage blades
,”
J. Fluids Eng.
141
,
15
(
2019
).
21.
N.
Arndt
,
A.
Acosta
,
C.
Brennen
, and
T.
Caughey
, “
Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers
,”
J. Turbomach.
112
,
98
(
1990
).
22.
Z. Y.
Wang
,
Z. D.
Qian
,
J.
Lu
, and
P. F.
Wu
, “
Effects of flow rate and rotational speed on pressure fluctuations in a double-suction centrifugal pump
,”
Energy
170
,
212
(
2019
).
23.
B.
Gao
,
P. G.
Guo
,
N.
Zhang
,
Z.
Li
, and
M. G.
Yang
, “
Unsteady pressure pulsation measurements and analysis of a low specific speed centrifugal pump
,”
J. Fluids Eng.
139
,
9
(
2017
).
24.
Y. B.
Liu
and
L.
Tan
, “
Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode
,”
Renewable Energy
129
,
606
(
2018
).
25.
S.
Guo
and
H.
Okamoto
, “
An experimental study on the fluid forces induced by rotor-stator interaction in a centrifugal pump
,”
Int. J. Rotating Mach.
9
,
135
(
2003
).
26.
A.
Zabihihesari
,
F. A.
Shirazi
,
A.
Riasi
,
M.
Mahjoob
, and
E.
Asnaashari
, “
Simulation-based vibration sensor placement for centrifugal pump impeller fault detection
,”
J. Comput. Appl. Mech.
51
,
72
(
2020
).
27.
M.
Jamimoghaddam
,
A.
Sadighi
, and
Z.
Araste
,
ESA-Based Anomaly Detection of a Centrifugal Pump Using Self-Organizing Map
(
Sadjad University
,
Mashhad, Iran
,
2020
).
28.
S.
Cao
,
Z.
Hu
,
X.
Luo
, and
H.
Wang
, “
Research on fault diagnosis technology of centrifugal pump blade crack based on PCA and GMM
,”
Measurement
173
,
108558
(
2021
).
29.
M.
Tan
,
Y.
Lu
,
X.
Wu
,
H.
Liu
, and
X.
Tian
, “
Investigation on performance of a centrifugal pump with multi-malfunction
,”
J. Low Frequency Noise Vib. Active Control
40
,
740
(
2021
).
30.
X.
Wu
,
X.
Sun
,
M.
Tan
, and
H.
Liu
, “
Research on operating characteristics of a centrifugal pump with broken impeller
,”
Adv. Mech. Eng.
13
,
168781402110499
(
2021
).
31.
L.
Zhai
,
H.
Chen
,
Q.
Gu
, and
Z.
Ma
, “
Investigation on performance of a marine centrifugal pump with broken impeller
,”
Mod. Phys. Lett. B
36
,
2250174
(
2022
).
32.
H.
Li
,
Q.
Huang
,
S.
Li
,
Y.
Li
,
Q.
Fu
, and
R.
Zhu
, “
Study on flow characteristics of a single blade breakage fault in a centrifugal pump
,”
Processes
11
,
2695
(
2023
).
33.
F.
He
,
X. S.
Dong
,
N. J.
Zou
,
W. G.
Wu
, and
X. J.
Zhang
, “
Structured mesh-oriented framework design and optimization for a coarse-grained parallel CFD solver based on hybrid MPI/OpenMP programming
,”
J. Supercomput.
76
,
2815
(
2020
).
34.
R.
Abernethy
,
R.
Benedict
, and
R.
Dowdell
, “
ASME measurement uncertainty
,”
J. Fluids Eng.
107
,
161
(
1985
).
35.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
ASME J. Fluids Eng.
130
(
7
),
078001
(
2008
).
36.
Y. P.
Lin
,
X. J.
Li
,
Z. C.
Zhu
,
X. M.
Wang
,
T.
Lin
, and
H. B.
Cao
, “
An energy consumption improvement method for centrifugal pump based on bionic optimization of blade trailing edge
,”
Energy
246
,
123323
(
2022
).
37.
J.
Paik
,
F.
Sotiropoulos
, and
F.
Porté-Agel
, “
Detached eddy simulation of flow around two wall-mounted cubes in tandem
,”
Int. J. Heat Fluid Flow
30
,
286
(
2009
).
38.
Y. Y.
Wang
,
J.
Pei
,
S. Q.
Yuan
, and
W. J.
Wang
, “
Effect of baffles in between stages on performance and flow characteristics of a two-stage split case centrifugal pump
,” in
Proceedings of the ASME Fluids Engineering Division Summer Meeting
(
ASME
,
Waikoloa, HI
,
2017
).
39.
M.
Strelets
, “
Detached eddy simulation of massively separated flows
,” AIAA Paper No. AIAA 2001-879, 2001.
40.
A.
Misra
and
D. I.
Pullin
, “
A vortex-based subgrid stress model for large-eddy simulation
,”
Phys. Fluids
9
,
2443
(
1997
).
41.
J. C.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” in
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
(
1988
).
42.
P. R.
Spalart
, “
Direct simulation of a turbulent boundary layer up to Rθ = 1410
,”
J. Fluid Mech.
187
,
61
(
1988
).
43.
Y.
Zhang
,
K.
Liu
,
H.
Xian
, and
X.
Du
, “
A review of methods for vortex identification in hydroturbines
,”
Renewable Sustainable Energy Rev.
81
,
1269
(
2018
).
44.
P.
Moin
and
J.
Kim
, “
The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations
,”
J. Fluid Mech.
155
,
441
(
1985
).
45.
X.
Su
,
S.
Huang
,
X.
Zhang
, and
S.
Yang
, “
Numerical research on unsteady flow rate characteristics of pump as turbine
,”
Renewable Energy
94
,
488
(
2016
).
46.
M. M.
Ghorani
,
M. H. S.
Haghighi
,
A.
Maleki
, and
A.
Riasi
, “
A numerical study on mechanisms of energy dissipation in a pump as turbine (PAT) using entropy generation theory
,”
Renewable Energy
162
,
1036
(
2020
).
47.
C.
Wang
,
Y.
Zhang
,
H.
Hou
,
J.
Zhang
, and
C.
Xu
, “
Entropy production diagnostic analysis of energy consumption for cavitation flow in a two-stage LNG cryogenic submerged pump
,”
Int. J. Heat Mass Transfer
129
,
342
(
2019
).
48.
H.
Guan
,
W.
Jiang
,
J.
Yang
,
Y.
Wang
,
X.
Zhao
, and
J.
Wang
, “
Energy loss analysis of the double-suction centrifugal pump under different flow rates based on entropy production theory
,”
Proc. Inst. Mech. Eng., Part C
234
,
4009
(
2020
).
49.
Z.
Zhang
,
X.
Su
,
Y.
Jin
,
Z.
Zhu
, and
T.
Lin
, “
Research on energy recovery through hydraulic turbine system in marine desulfurization application
,”
Sustainable Energy Technol. Assess.
51
,
101912
(
2022
).
50.
X.
Jia
,
H.
Lv
, and
Z.
Zhu
, “
Research on the influence of impeller tip clearance on the internal flow loss of axial circulating pump under unpowered driven condition
,”
J. Fluids Eng.
145
,
021202
(
2023
).
51.
C.
Ye
,
Y.
Tang
,
D.
An
,
F.
Wang
,
Y.
Zheng
, and
B.
van Esch
, “
Investigation on stall characteristics of marine centrifugal pump considering transition effect
,”
Ocean Eng.
280
,
114823
(
2023
).
You do not currently have access to this content.