Autoregressive models (ARMs) can be powerful tools for quantifying uncertainty in the time averages of turbulent flow quantities. This is because ARMs are efficient estimators of the autocorrelation function (ACF) of statistically stationary turbulence processes. In this study, we demonstrate a method for order selection of ARMs that uses the integral timescale of turbulence. A crucial insight into the operating principles of the ARM in terms of the time span covered by the product of model order and spacing between samples is provided, which enables us to develop computationally efficient implementations of ARM-based uncertainty estimators. This approach facilitates the quantification of uncertainty in downsampled time series and on a series of autocorrelated batch means with minimal loss of accuracy. Furthermore, a method for estimating uncertainties in second-order moments using first-order uncertainties is discussed. These techniques are applied to the time series data of turbulent flow a) through a plane channel and b) over periodic hills. Additionally, we illustrate the potential of ARMs in generating synthetic turbulence time series. Our study presents autoregressive models as intuitive and powerful tools for turbulent flows, paving the way for further applications in the field.

1.
V.
Makarashvili
,
E.
Merzari
,
A.
Obabko
,
A.
Siegel
, and
P.
Fischer
, “
A performance analysis of ensemble averaging for high fidelity turbulence simulations at the strong scaling limit
,”
Comput. Phys. Commun.
219
,
236
245
(
2017
).
2.
B. I.
Krasnopolsky
, “
An approach for accelerating incompressible turbulent flow simulations based on simultaneous modelling of multiple ensembles
,”
Comput. Phys. Commun.
229
,
8
19
(
2018
).
3.
R.
Tosi
,
M.
Núñez
,
J.
Pons-Prats
,
J.
Principe
, and
R.
Rossi
, “
On the use of ensemble averaging techniques to accelerate the uncertainty quantification of CFD predictions in wind engineering
,”
J. Wind Eng. Ind. Aerodyn.
228
,
105105
(
2022
).
4.
F.
Mallor
, “
Turbulent channel flow and ensemble averaging
,” M. S. thesis (
KTH Royal Institute of Technology
,
Stockholm, Sweden
,
2019
).
5.
R. W.
Conway
, “
Some tactical problems in digital simulation
,”
Manage. Sci.
10
,
47
61
(
1963
).
6.
P. M. T.
Broersen
, “
Estimation of the accuracy of mean and variance of correlated data
,”
IEEE Trans. Instrum. Meas.
47
,
1085
1091
(
1998
).
7.
P.
Schlatter
and
R.
Örlü
, “
Turbulent boundary layers at moderate reynolds numbers: Inflow length and tripping effects
,”
J. Fluid Mech.
710
,
5
34
(
2012
).
8.
D.
Xavier
, “
Uncertainty quantification for time varying quantities in turbulent flows
,” Ph.D. thesis (
KTH Royal Institute of Technology
,
Stockholm, Sweden
,
2024
).
9.
Y.
Shirian
,
J. A.
Horwitz
, and
A.
Mani
, “
On the convergence of statistics in simulations of stationary incompressible turbulent flows
,”
Comput. Fluids
266
,
106046
(
2023
).
10.
S.
Russo
and
P.
Luchini
, “
A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages
,”
J. Comput. Phys.
347
,
328
340
(
2017
).
11.
A.
Ferrero
,
F.
Larocca
,
M.
Germano
, and
G.
Scovazzi
, “
A study on the statistical convergence of turbulence simulations around a cylinder
,” in
International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2019)
(
AIP Publishing
,
2020
).
12.
M. B.
Priestley
,
Spectral Analysis and Time Series
(
Academic Press
,
1981
).
13.
P. M. T.
Broersen
,
Automatic Autocorrelation and Spectral Analysis
(
Springer-Verlag London Limited
,
2006
).
14.
T.
Oliver
,
N.
Malaya
,
R.
Ulerich
, and
R.
Moser
, “
Estimating uncertainties in statistics computed from direct numerical simulation
,”
Phys. Fluids
26
,
035101
(
2014
).
15.
P. M. T.
Broersen
, “
Autoregressive model orders for Durbin's MA and ARMA estimators
,”
IEEE Trans. Signal Process.
48
,
2454
2457
(
2000
).
16.
P. M. T.
Broersen
, “
Finite sample criteria for autoregressive order selection
,”
IEEE Trans. Signal Process.
48
,
3550
3558
(
2001
).
17.
P. M. T.
Broersen
, “
The ABC of autoregressive order selection criteria
,” in
IFAC Proceedings Volumes
(
Elsevier
,
1997
), Vol. 30, pp.
245
250
.
18.
P. M. T.
Broersen
, “
Persistent misconceptions in autocorrelation estimation
,” in
2006 IEEE Instrumentation and Measurement Technology Conference Proceedings
(
IEEE
,
2006
).
19.
P.
Vaezi
and
C.
Holland
, “
Quantifying the temporal uncertainties of nonlinear turbulence simulations
,” arXiv:1902.10879 (
2019
).
20.
D.
Thomson
, “
Criteria for the selection of stochastic models of particle trajectories in turbulent flows
,”
J. Fluid Mech.
180
,
529
556
(
1987
).
21.
S.
Pope
, “
Simple models of turbulent flows
,”
Phys. Fluids
23
,
011301
(
2011
).
22.
D.
Faranda
,
F. M. E.
Pons
,
B.
Dubrulle
,
F.
Daviaud
,
B.
Saint-Michel
,
É.
Herbert
, and
P. P.
Cortet
, “
Modelling and analysis of turbulent datasets using auto regressive moving average processes
,”
Phys. Fluids
26
,
105101
(
2014
).
23.
A.
Patil
,
J.
Viquerat
, and
E.
Hachem
, “
Autoregressive transformers for data-driven spatiotemporal learning of turbulent flows
,”
APL Mach. Learn.
1
,
046101
(
2023
).
24.
H.
Akaike
, “
A new look at the statistical model identification
,”
IEEE Trans. Autom. Control
19
,
716
723
(
1974
).
25.
H.
Akaike
, “
A Bayesian analysis of the minimum AIC procedure
,”
Ann. Inst. Stat. Math.
30
,
9
143
(
1978
).
26.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
27.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
28.
S.
Rezaeiravesh
,
D.
Xavier
,
R.
Vinuesa
,
J.
Yao
,
F.
Hussain
, and
P.
Schlatter
, “
Estimating uncertainty of low- and high-order turbulence statistics in wall turbulence
,” in
12th International Symposium on Turbulence and Shear Flow Phenomena
(TSFP12) Osaka, Japan (Online), July 19–22
2022
.
29.
S.
Rezaeiravesh
,
C.
Gscheidle
,
A.
Peplinski
,
J.
Garcke
, and
P.
Schlatter
, “
In-situ estimation of time-averaging uncertainties in turbulent flow simulations
,” arXiv:2310.08676 (
2023
).
30.
D.
Xavier
,
S.
Rezaeiravesh
,
R.
Vinuesa
, and
P.
Schlatter
, “
Reliable quantification of uncertainty in time averages of turbulence simulation
,” in
74th Annual Meeting of the APS Division of Fluid Dynamics
, Vol.
66
,
2021
.
31.
J. P.
Burg
, “
Maximum entropy spectral analysis
,” Ph.D. thesis, Stanford Exploration Project-6 (
Standford University
,
1975
).
32.
M.
de Hoon
,
T.
van der Hagen
,
H.
Schoonewelle
, and
H.
van Dam
, “
Why yule-walker should not be used for autoregressive modelling
,”
Ann. Nucl. Energy
23
,
1219
1228
(
1996
).
33.
S.
de Waele
,
A.
van Dijk
, ,
P. G.
Duynkerke
, and
P. M. T.
Broersen
, “
Estimation of the integral time scale with time series models
,” in
Proceedings of the 15th Symposium On Boundary Layers and Turbulence
(TU Delft,
2002
), pp. 283–286.
34.
M.
Bulmer
,
Principles of Statistics
(
Dover Publications, Inc
.,
New York
,
1979
).
35.
J.
Yao
,
S.
Rezaeiravesh
,
P.
Schlatter
, and
F.
Hussain
, “
Direct numerical simulations of turbulent pipe flow up to reτ5200
,”
J. Fluid Mech.
956
,
A18
(
2023
).
36.
S.
Rezaeiravesh
,
R.
Vinuesa
, and
P.
Schlatter
, “
UQit: A Python package for uncertainty quantification (UQ) in computational fluid dynamics (CFD)
,”
J. Open Source Software
6
,
2871
(
2021a
).
37.
P. F.
Fischer
,
J. W.
Lottes
, and
S. G.
Kerkemeier
,
Nek5000: Open Source Spectral element CFD Solver
(Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL,
2008
). [https://nek5000[nek5000].mcs/]https://nek5000[nek5000].mcs.anl.Gov.
38.
K.
Iwamoto
,
Y.
Suzuki
, and
N.
Kasagi
, “
Reynolds number effect on wall turbulence: Toward effective feedback control
,”
Int. J. Heat Fluid Flow
23
,
678
689
(
2002
).
39.
S.
Rezaeiravesh
,
R.
Vinuesa
, and
P.
Schlatter
, “
On numerical uncertainties in scale-resolving simulations of canonical wall turbulence
,”
Comput. Fluids
227
,
105024
(
2021b
).
40.
P.
White
,
M.
Cobb
, and
S.
Spratt
, “
A comparison of five steady-state truncation heuristics for simulation
,” in
2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165)
(
IEEE
,
2000
), Vol.
1
, pp.
755
760
.
41.
P.
Beyhaghi
,
S. R.
Alimo
, and
T.
Bewley
, “
A multiscale, asymptotically unbiased approach to uncertainty quantification in the numerical approximation of infinite time-averaged statistics
,” arXiv:1802.01056v1 (
2018
).
42.
K.
Hoad
and
S.
Robinson
, “
Implementing MSER-5 in commercial simulation software and its wider implications
,” in
Proceedings of the 2011 Winter Simulation Conference (WSC
) (
IEEE
,
2011
).
43.
K.
Hoad
,
S.
Robinson
, and
R.
Davies
, “
Automating warm-up length estimation
,”
J. Oper. Res. Soc.
61
,
1389
1403
(
2010
).
44.
D.
Xavier
,
S.
Rezaeiravesh
,
R.
Vinuesa
, and
P.
Schlatter
, “
Automatic estimation of initial transient in a turbulent flow time series
,” in
the 8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022
(
2022
).
45.
C. V.
Frontin
and
D. L.
Darmofal
, “
Output error behavior for discretizations of ergodic, chaotic systems of ordinary differential equations
,”
Phys. Fluids
34
,
105136
(
2022
).
46.
J.
Hamilton
,
Time Series Analysis
(
Princeton University Press
,
Princeton, NJ
,
1994
).
47.
K. R.
Sreenivasan
,
A. J.
Chambers
, and
R. A.
Antonia
, “
Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer
,”
Boundary Layer Meteorol.
14
,
341
359
(
1978
).
48.
M.
Quadrio
and
P.
Luchini
, “
Integral space–time scales in turbulent wall flows
,”
Phys. Fluids
15
,
2219
2227
(
2003
).
49.
N. V. C.
Swamy
,
B. H. L.
Gowda
, and
V. R.
Lakshminath
, “
Auto-correlation measurements and integral time scales in three-dimensional turbulent boundary layers
,”
NASA/ADS, Appl. Sci. Res.
35
,
237
249
(
1979
).
50.
M.
Breuer
,
N.
Peller
,
C.
Rapp
, and
M.
Manhart
, “
Flow over periodic hills - numerical and experimental study in a wide range of Reynolds numbers
,”
Comput. Fluids
38
,
433
457
(
2009
).
51.
P.
Balakumar
, “
DNS/LES simulations of separated flows at high reynolds numbers
,” AIAA Paper No. 2015–2783,
2015
.
52.
J.
Fröhlich
,
C. P.
Mellen
,
W.
Rodi
,
L.
Temmerman
, and
M. A.
Leschziner
, “
Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions
,”
J. Fluid Mech.
526
,
19
66
(
2005
).
53.
N.
Offermans
,
A.
Peplinski
,
O.
Marin
, and
P.
Schlatter
, “
Adjoint error estimators and adaptive mesh refinement in nek5000
,” Technical Report (
2017
).
54.
C. R.
Pavageau
and
M. J.
Eliser–Cortes
, “
Potential benefit from the application of autoregressive spectral estimators in the analysis of homogeneous and isotropic turbulence
,”
Exp. Fluids
36
,
847
859
(
2004
).
55.
R.
Stanly
,
S.
Du
,
D.
Xavier
,
A.
Perez
,
T.
Mukha
,
S.
Markidis
,
S.
Rezaeiravesh
, and
P.
Schlatter
, “
Generating synthetic turbulence with vector autoregression of proper orthogonal decomposition time coefficients
,”
J. Fluid Mech.
(submitted) (
2024
).
You do not currently have access to this content.