The Rayleigh–Bénard convection system exhibits certain known symmetries at low Rayleigh numbers that are broken as the Rayleigh number increases. In this study, we investigate the statistical symmetry of Rayleigh–Bénard convection at moderately high Rayleigh numbers through direct numerical simulations. The simulations are conducted for a fluid confined within two-dimensional walls, with an aspect ratio of unity and a fixed Prandtl number. Although elliptical large-scale circulations break both left-right and top-down reflection symmetries, we observe the emergence of a restored double-reflection symmetry. This symmetry is evident in the velocity and temperature fields, as well as in the variations of mean velocity and temperature profiles along the streamwise direction and the characteristics of the kinetic and thermal boundary layers. For Rayleigh numbers ranging between 107 and 1010, our results demonstrate a remarkable data collapse under this double-reflection transformation.

1.
J.
Schumacher
and
K. R.
Sreenivasan
, “
Colloquium: Unusual dynamics of convection in the sun
,”
Rev. Mod. Phys.
92
,
041001
(
2020
).
2.
D.
Lohse
and
O.
Shishkina
, “
Ultimate turbulent thermal convection
,”
Phys. Today
76
(
11
),
26
(
2023
).
3.
G.
Ahlers
and
X.
Xu
, “
Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
86
,
3320
(
2001
).
4.
J. J.
Niemela
and
K. R.
Sreenivasan
, “
Confined turbulent convection
,”
J. Fluid Mech.
481
,
355
(
2003
).
5.
X.
Chavanne
,
F.
Chilla
,
B.
Chabaud
,
B.
Castaing
, and
B.
Hebral
, “
Turbulent Rayleigh–Bénard convection in gaseous and liquid He
,”
Phys. Fluids
13
,
1300
(
2001
).
6.
P.
Urban
,
V.
Musilová
, and
L.
Skrbek
, “
Efficiency of heat transfer in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
107
,
014302
(
2011
).
7.
X.
He
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Universal scaling of temperature variance in Rayleigh–Bénard convection near the transition to the ultimate state
,”
J. Fluid Mech.
931
,
A7
(
2022
).
8.
H.
Jiang
,
D.
Wang
,
S.
Liu
, and
C.
Sun
, “
Experimental evidence for the existence of the ultimate regime in rapidly rotating turbulent thermal convection
,”
Phys. Rev. Lett.
129
,
204502
(
2022
).
9.
X. J.
Zhu
,
V.
Mathai
,
R. J. A. M.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Transition to the ultimate regime in two-dimensional Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
120
,
144502
(
2018
).
10.
B. L.
Wen
,
D.
Goluskin
, and
C. R.
Doering
, “
Steady Rayleigh-Bénard convection between no-slip boundaries
,”
J. Fluid Mech.
933
,
R4
(
2022
).
11.
K. P.
Iyer
,
J. D.
Scheel
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
Classical 1/3 scaling of convection holds up to Ra = 1015
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
7594
(
2020
).
12.
J.-C.
He
,
Y.
Bao
, and
X.
Chen
, “
Scaling transition of thermal dissipation in turbulent convection
,”
Phys. Fluids
35
,
015126
(
2023
).
13.
W. V.
Malkus
, “
Discrete transitions in turbulent convection
,”
Proc. R. Soc. A
225
,
185
(
1954
).
14.
R. H.
Kraichnan
, “
Turbulent thermal convection at arbitrary Prandtl number
,”
Phys. Fluids
5
,
1374
(
1962
).
15.
E. D.
Siggia
, “
High Rayleigh number convection
,”
Annu. Rev. Fluid Mech.
26
,
137
(
1994
).
16.
M.
Hölling
and
H.
Herwig
, “
Asymptotic analysis of heat transfer in turbulent Rayleigh–Bénard convection
,”
Int. J. Heat Mass Transfer
49
,
1129
(
2006
).
17.
R. J. A. M.
Stevens
,
E. P.
van der Poel
,
S.
Grossmann
, and
D.
Lohse
, “
The unifying theory of scaling in thermal convection: The updated prefactors
,”
J. Fluid Mech.
730
,
295
(
2013
).
18.
P.-E.
Roche
, “
The ultimate state of convection: A unifying picture of very high Rayleigh numbers experiments
,”
New J. Phys.
22
,
073056
(
2020
).
19.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Turbulent convection at very high Rayleigh numbers
,”
Nature
404
,
837
(
2000
).
20.
M.
MacDonald
,
N.
Hutchins
,
D.
Lohse
, and
D.
Chung
, “
Heat transfer in rough-wall turbulent thermal convection in the ultimate regime
,”
Phys. Rev. Fluids
4
,
071501
(
2019
).
21.
A.
Barral
and
B.
Dubrulle
, “
Asymptotic ultimate regime of homogeneous Rayleigh–Bénard convection on logarithmic lattices
,”
J. Fluid Mech.
962
,
A2
(
2023
).
22.
M. L.
Olson
,
G.
David
,
W. W.
Schultz
, and
C. R.
Doering
, “
Heat transport bounds for a truncated model of Rayleigh-Bénard convection via polynomial optimization
,”
Physica D
415
,
132748
(
2021
).
23.
C. R.
Doering
, “
Turning up the heat in turbulent thermal convection
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
9671
(
2020
).
24.
J.-C.
He
,
Y.
Bao
, and
X.
Chen
, “
Turbulent boundary layers in thermal convection at moderately high Rayleigh numbers
,”
Phys. Fluids
36
,
025140
(
2024
).
25.
S.
Rosenblat
, “
Thermal convection in a vertical circular cylinder
,”
J. Fluid Mech.
122
,
395
(
1982
).
26.
R. P.
Behringer
, “
Rayleigh-Bénard convection and turbulence in liquid helium
,”
Rev. Mod. Phys.
57
,
657
(
1985
).
27.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
32
,
709
(
2000
).
28.
S. W.
Morris
,
E.
Bodenschatz
,
D. S.
Cannell
, and
G.
Ahlers
, “
Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
71
,
2026
(
1993
).
29.
B.
Castaing
,
G.
Gunaratne
,
F.
Heslot
,
L.
Kadanoff
,
A.
Libchaber
,
S.
Thomae
,
X.-Z.
Wu
,
S.
Zaleski
, and
G.
Zanetti
, “
Scaling of hard thermal turbulence in Rayleigh-Bénard convection
,”
J. Fluid Mech.
204
,
1
30
(
1989
).
30.
Y.
Zhang
,
Y.-X.
Huang
,
N.
Jiang
,
Y.-L.
Liu
,
Z.-M.
Lu
,
X.
Qiu
, and
Q.
Zhou
, “
Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection
,”
Phys. Rev. E
96
,
023105
(
2017
).
31.
Q.
Zhou
,
K.
Sugiyama
,
R. J.
Stevens
,
S.
Grossmann
,
D.
Lohse
, and
K.-Q.
Xia
, “
Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection
,”
Phys. Fluids
23
,
125104
(
2011
).
32.
J.
Schumacher
,
J. D.
Scheel
,
D.
Krasnov
,
D. A.
Donzis
,
V.
Yakhot
, and
K. R.
Sreenivasan
, “
Small-scale universality in fluid turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
10961
(
2014
).
33.
J.
Wang
and
K.-Q.
Xia
, “
Spatial variations of the mean and statistical quantities in the thermal boundary layers of turbulent convection
,”
Eur. Phys. J. B
32
,
127
(
2003
).
34.
A.
Pandey
,
M. K.
Verma
, and
M.
Barma
, “
Reversals in infinite-Prandtl-number Rayleigh-Bénard convection
,”
Phys. Rev. E
98
,
023109
(
2018
).
35.
G.
Silano
,
K.
Sreenivasan
, and
R.
Verzicco
, “
Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10–1 and 104 and Rayleigh numbers between 105 and 109
,”
J. Fluid Mech.
662
,
409
(
2010
).
36.
M.
Chandra
and
M. K.
Verma
, “
Dynamics and symmetries of flow reversals in turbulent convection
,”
Phys. Rev. E
83
,
067303
(
2011
).
37.
U.
Frisch
and
A. N.
Kolmogorov
,
Turbulence:The Legacy of an Kolmogorov
(
Cambridge University Press
,
1995
).
38.
F.
Heslot
,
B.
Castaing
, and
A.
Libchaber
, “
Transitions to turbulence in helium gas
,”
Phys. Rev. A
36
,
5870
(
1987
).
39.
K.
Borońska
and
L. S.
Tuckerman
, “
Standing and travelling waves in cylindrical Rayleigh–Bénard convection
,”
J. Fluid Mech.
559
,
279
(
2006
).
40.
K.-Q.
Xia
,
C.
Sun
, and
S.-Q.
Zhou
, “
Particle image velocimetry measurement of the velocity field in turbulent thermal convection
,”
Phys. Rev. E
68
,
066303
(
2003
).
41.
C.
Sun
,
H.-D.
Xi
, and
K.-Q.
Xia
, “
Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5
,”
Phys. Rev. Lett.
95
,
074502
(
2005
).
42.
S.-L.
Lui
and
K.-Q.
Xia
, “
Spatial structure of the thermal boundary layer in turbulent convection
,”
Phys. Rev. E
57
,
5494
(
1998
).
43.
A.
Pandey
, “
Thermal boundary layer structure in low-Prandtl-number turbulent convection
,”
J. Fluid Mech.
910
,
A13
(
2021
).
44.
F.
Chillà
and
J.
Schumacher
, “
New perspectives in turbulent Rayleigh-Bénard convection
,”
Eur. Phys. J. E
35
,
58
(
2012
).
45.
A.
Pandey
,
J.
Schumacher
, and
K. R.
Sreenivasan
, “
Non-Boussinesq convection at low Prandtl numbers relevant to the sun
,”
Phys. Rev. Fluids
6
,
100503
(
2021
).
46.
M.
Huang
and
X.
He
, “
Effect of slip length on flow dynamics and heat transport in two-dimensional Rayleigh–Bénard convection
,”
J. Turbul.
23
,
492
(
2022
).
47.
J. C.
He
,
M. W.
Fang
,
Z. Y.
Gao
,
S. D.
Huang
, and
Y.
Bao
, “
Effects of Prandtl number in two-dimensional turbulent convection
,”
Chin. Phys. B
30
,
094701
(
2021
).
48.
O.
Shishkina
,
R.
Stevens
,
S.
Grossmann
, and
D.
Lohse
, “
Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution
,”
New J. Phys.
12
,
075022
(
2010
).
You do not currently have access to this content.