Cross-zero expansion coefficient Rayleigh–Bénard–Marangoni (CRBM) convection refers to the convective phenomenon where thermal convection with stratified positive and negative expansion coefficients in a liquid layer is coupled with the Marangoni convection. In the Bénard convection, fluids with a cross-zero expansion coefficient contain a neutral expansion layer where the expansion coefficient (α) is zero, and the local buoyancy-driven convection is coupled with the Marangoni convection, leading to unique flow instability phenomena. This paper uses linear stability theory to analyze the CRBM convection in a horizontal liquid layer under a vertical temperature gradient and performs numerical calculations for fluids under different Bond numbers (Bd) in both bottom-heated and bottom-cooled models, obtaining the critical destabilization conditions and modes. In the bottom-heated model, different combinations of buoyancy instability mechanism (BIM), tension instability mechanism, and coupled instability mechanism (CIM) appear depending on the dimensionless temperature for the neutral expansion layer (Tα0) and the Bd. In the bottom-cooled model, two mechanisms occur according to the variation of Tα0: BIM and CIM.

1.
H.
Bénard
, “
Les tourbillons cellulaires dans une nappe liquide—Méthodes optiques d'observation et d'enregistrement
,”
J. Phys. Theor. Appl.
10
(
1
),
254
266
(
1901
).
2.
L.
Rayleigh
, “
LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
32
(
192
),
529
546
(
1916
).
3.
P. H.
Roberts
, “
Convection in horizontal layers with internal heat generation. Theory
,”
J. Fluid Mech.
30
(
1
),
33
49
(
1967
).
4.
M.
Tveitereid
and
E.
Palm
, “
Convection due to internal heat sources
,”
J. Fluid Mech.
76
(
3
),
481
499
(
1976
).
5.
N.
Rudraiah
and
G. N.
Sekhar
, “
Convection in magnetic fluids with internal heat generation
,”
J. Heat Transfer
113
(
1
),
122
127
(
1991
).
6.
A.
Barletta
and
D. A. S.
Rees
, “
Local thermal non-equilibrium effects in the Darcy–Bénard instability with isoflux boundary conditions
,”
Int. J. Heat Mass Transfer
55
(
1–3
),
384
394
(
2012
).
7.
J.
Hu
,
S.
Zhang
, and
Z.
Xia
, “
Flow reversal and multiple states in turbulent Rayleigh–Bénard convection with partially isothermal plates
,”
J. Fluid Mech.
987
,
A9
(
2024
).
8.
H. R.
Liu
,
K. L.
Chong
,
R.
Yang
et al, “
Heat transfer in turbulent Rayleigh–Bénard convection through two immiscible fluid layers
,”
J. Fluid Mech.
938
,
A31
(
2022
).
9.
J.
Mac Huang
and
J.
Zhang
, “
Rayleigh–Bénard thermal convection perturbed by a horizontal heat flux
,”
J. Fluid Mech.
954
,
R2
(
2023
).
10.
B.
Wen
,
D.
Goluskin
, and
C. R.
Doering
, “
Steady Rayleigh–Bénard convection between no-slip boundaries
,”
J. Fluid Mech.
933
,
R4
(
2022
).
11.
M.
Eslamian
,
M.
Ahmed
,
M. F.
El-Dosoky
et al, “
Effect of thermophoresis on natural convection in a Rayleigh–Benard cell filled with a nanofluid
,”
Int. J. Heat Mass Transfer
81
,
142
156
(
2015
).
12.
M.
Narayana
,
P.
Sibanda
,
P. G.
Siddheshwar
et al, “
Linear and nonlinear stability analysis of binary viscoelastic fluid convection
,”
Appl. Math. Modell.
37
(
16–17
),
8162
8178
(
2013
).
13.
P. G.
Siddheshwar
and
N.
Meenakshi
, “
Amplitude equation and heat transport for Rayleigh–Bénard convection in Newtonian liquids with nanoparticles
,”
Int. J. Appl. Comput. Math.
3
,
271
292
(
2017
).
14.
M.
Shruthy
and
B.
Mahanthesh
, “
Rayleigh-Bénard convection in Casson and hybrid nanofluids: An analytical investigation
,”
J. Nanofluids
8
(
1
),
222
229
(
2019
).
15.
B.
Favier
,
J.
Purseed
, and
L.
Duchemin
, “
Rayleigh–Bénard convection with a melting boundary
,”
J. Fluid Mech.
858
,
437
473
(
2019
).
16.
C.
Kanchana
,
P. G.
Siddheshwar
, and
Z.
Yi
, “
The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models
,”
Appl. Math. Modell.
88
,
349
366
(
2020
).
17.
P. G.
Siddheshwar
,
C.
Kanchana
, and
D.
Laroze
, “
Rayleigh–Bénard convection in a radiating fluid
,”
J. Heat Transfer
144
(
10
),
102601
(
2022
).
18.
S.
Agarwal
,
P.
Rana
, and
B. S.
Bhadauria
, “
Rayleigh–Benard convection in a nanofluid layer using a thermal nonequilibrium model
,”
J. Heat Transfer
136
(
12
),
122501
(
2014
).
19.
D.
Pritchard
and
C. N.
Richardson
, “
The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer
,”
J. Fluid Mech.
571
,
59
95
(
2007
).
20.
P. G.
Siddheshwar
,
V.
Ramachandramurthy
, and
D.
Uma
, “
Rayleigh–Bénard and Marangoni magnetoconvection in Newtonian liquid with thermorheological effects
,”
Int. J. Eng. Sci.
49
(
10
),
1078
1094
(
2011
).
21.
G.
Veronis
, “
Penetrative convection
,”
Astrophys. J.
137
,
641
(
1963
).
22.
S.
Musman
, “
Penetrative convection
,”
J. Fluid Mech.
31
(
2
),
343
360
(
1968
).
23.
S. L.
Goren
, “
On free convection in water at 4 °C
,”
Chem. Eng. Sci.
21
(
6–7
),
515
518
(
1966
).
24.
D. R.
Moore
and
N. O.
Weiss
, “
Nonlinear penetrative convection
,”
J. Fluid Mech.
61
(
3
),
553
581
(
1973
).
25.
G.
Ahlers
,
E.
Brown
,
F. F.
Araujo
et al, “
Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
569
,
409
445
(
2006
).
26.
S.
Kashanj
and
D. S.
Nobes
, “
Temperature field of non-Oberbeck–Boussinesq Rayleigh–Bénard convection in a low aspect ratio cell
,”
Phys. Fluids
36
(
4
),
047110
(
2024
).
27.
Z. H.
Wan
,
Q.
Wang
,
B.
Wang
et al, “
On non-Oberbeck–Boussinesq effects in Rayleigh–Bénard convection of air for large temperature differences
,”
J. Fluid Mech.
889
,
A10
(
2020
).
28.
S. N.
Xia
,
Z. H.
Wan
,
S.
Liu
et al, “
Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects
,”
J. Fluid Mech.
798
,
628
642
(
2016
).
29.
X.
Pan
and
J. I.
Choi
, “
Non-Oberbeck–Boussinesq effects on a water-filled differentially heated vertical cavity
,”
Phys. Fluids
35
(
11
),
113609
(
2023
).
30.
A. D.
Demou
and
D. G. E.
Grigoriadis
, “
Direct numerical simulations of Rayleigh–Bénard convection in water with non-Oberbeck–Boussinesq effects
,”
J. Fluid Mech.
881
,
1073
1096
(
2019
).
31.
M.
Basavarajappa
and
D.
Bhatta
, “
The Rayleigh–Bénard problem for water with maximum density effects
,”
Phys. Fluids
35
(
7
),
074111
(
2023
).
32.
D.
Fan
,
X.
Xia
,
H.
Ma
et al, “
Honeycomb-patterned fluorescent films fabricated by self-assembly of surfactant-assisted porphyrin/polymer composites
,”
J. Colloid Interface Sci.
402
,
146
150
(
2013
).
33.
D. W.
Janes
,
J. M.
Katzenstein
,
K.
Shanmuganathan
et al, “
Directing convection to pattern thin polymer films
,”
J. Polym. Sci., Part B
51
(
7
),
535
545
(
2013
).
34.
I.
Nejati
,
M.
Dietzel
, and
S.
Hardt
, “
Exploiting cellular convection in a thick liquid layer to pattern a thin polymer film
,”
Appl. Phys. Lett.
108
(
5
),
051604
(
2016
).
35.
D.
Wu
,
L.
Duan
, and
Q.
Kang
, “
Defects of Bénard cell on a propagating front
,”
Phys. Fluids
32
(
2
),
024107
(
2020
).
36.
L. E.
Scriven
and
C. V.
Sternling
, “
The Marangoni effects
,”
Nature
187
(
4733
),
186
188
(
1960
).
37.
P. G.
Grodzka
and
T. C.
Bannister
, “
Heat flow and convection demonstration experiments aboard Apollo 14
,”
Science
176
(
4034
),
506
508
(
1972
).
38.
I. B.
Ignatius
,
B.
Dinesh
,
G. F.
Dietze
et al, “
Influence of parametric forcing on Marangoni instability
,”
J. Fluid Mech.
981
,
A8
(
2024
).
39.
Y.
Li
,
J. G.
Meijer
, and
D.
Lohse
, “
Marangoni instabilities of drops of different viscosities in stratified liquids
,”
J. Fluid Mech.
932
,
A11
(
2022
).
40.
C.
Li
,
N.
Zhang
,
X.
Wang
et al, “
Marangoni instability of an evaporating binary mixture droplet
,”
Phys. Fluids
35
(
8
),
084103
(
2023
).
41.
D. J.
Dhas
,
A.
Roy
, and
S.
Toppaladoddi
, “
Penetrative and Marangoni convection in a fluid film over a phase boundary
,”
J. Fluid Mech.
977
,
A34
(
2023
).
42.
Q.
Kang
,
D.
Wu
,
L.
Duan
et al, “
Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2
,”
Phys. Fluids
32
(
3
),
034107
(
2020
).
43.
Q.
Kang
,
D.
Wu
,
L.
Duan
et al, “
Surface configurations and wave patterns of thermocapillary convection onboard the SJ10 satellite
,”
Phys. Fluids
31
(
4
),
044105
(
2019
).
44.
J.
Wang
,
Z.
Guo
,
C.
Jing
et al, “
Effect of volume ratio on thermocapillary convection in annular liquid pools in space
,”
Int. J. Therm. Sci.
179
,
107707
(
2022
).
45.
J. G.
Wissink
and
H.
Herlina
, “
Surface-temperature-induced Marangoni effects on developing buoyancy-driven flow
,”
J. Fluid Mech.
962
,
A23
(
2023
).
46.
K.
Dev
and
O. P.
Suthar
, “
Global stability of Bénard–Marangoni convection in an anisotropic porous medium
,”
Phys. Fluids
35
(
10
),
104112
(
2023
).
47.
D. A.
Nield
, “
Surface tension and buoyancy effects in cellular convection
,”
J. Fluid Mech.
19
(
3
),
341
352
(
1964
).
You do not currently have access to this content.