The flow and heat transfer processes of liquid argon within nanochannels with random roughness are investigated using the molecular dynamics method. This study explores the effects of surface roughness and wettability on flow and heat transfer performance. The results indicate that both surface roughness and wettability significantly influence temperature jumps, velocity slip, flow resistance, and temperature distribution. Specifically, hydrophilic surfaces can reduce temperature jumps and velocity slip due to their enhanced ability to adsorb liquid atoms, which effectively improves heat transfer while simultaneously increasing flow resistance. The fractal dimension D characterizes the surface roughness, which decreases as D increases. Additionally, both the Nusselt number and drag coefficient decrease with increasing D. In this study, we investigate cases where D ranges from 2.5 to 2.9, with D = 2.5 representing the highest roughness, and the smooth channel corresponding to the lowest roughness. For hydrophilic nanochannels at D = 2.5, the Nusselt number and drag coefficient increased by factor of 2.2 times and 5.2 times compared to smooth channels, respectively. For hydrophobic nanochannels at D = 2.5, the Nusselt number and drag coefficient increased by a factor of 4.5 times and 29.1 times compared to smooth surface channels, respectively. Considering both flow and heat transfer performances, the best comprehensive performance is achieved with D = 2.8 for channels with hydrophilic surfaces and D = 2.6 for channels with hydrophobic surfaces. This work systematically investigates the coupled effects of random roughness and wettability on the flow and heat transfer characteristics in nanochannels, providing new theoretical insights for optimizing nanochannel design.

1.
S. G.
Kandlikar
, “
Review and projections of integrated cooling systems for three-dimensional integrated circuits
,”
J. Electron Packag.
136
,
024001
(
2014
).
2.
H.
Herwig
, “
High heat flux cooling of electronics: The need for a paradigm shift
,”
Heat Transfer
135
,
111011
111013
(
2013
).
3.
Z. X.
Liu
,
Q.
Han
,
C. B.
Zhang
, and
W. M.
Li
, “
Experimental investigation of two-phase heat transfer in saw-tooth copper microchannels
,”
Int. J. Therm. Sci.
196
,
108740
(
2024
).
4.
S. S.
Murshed
and
D. N. C.
Castro
, “
A critical review of traditional and emerging techniques and fluids for electronics cooling
,”
Renewable Sustainable Energy Rev.
78
,
821
833
(
2017
).
5.
G.
Liang
,
Y. T.
Li
,
Z.
Bai
, and
M. H.
Xu
, “
Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design
,”
Appl. Therm. Eng.
137
,
288
295
(
2018
).
6.
L.
Chai
,
G. D.
Xia
,
L.
Wang
,
M. Z.
Zhou
, and
Z. Z.
Cui
, “
Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections
,”
Int. J. Heat Mass Transfer
62
,
741
751
(
2013
).
7.
A.
Sohankar
,
A.
Joulaei
, and
M.
Mahmoodi
, “
Fluid flow and convective heat transfer in a rotating rectangular microchannel with various aspect ratios
,”
Int. J. Therm. Sci.
172
,
107259
(
2022
).
8.
Z. H.
Wang
,
X. D.
Wang
,
W. M.
Yan
,
Y. Y.
Duan
,
D. J.
Lee
, and
J. L.
Xu
, “
Multi-parameters optimization for microchannel heat sink using inverse problem method
,”
Int. J. Heat Mass Transfer
54
,
2811
2819
(
2011
).
9.
H. C.
Chiu
,
J. H.
Jang
,
H. W.
Yeh
, and
M. S.
Wu
, “
The heat transfer characteristics of liquid cooling heatsink containing microchannels
,”
Int. J. Heat Mass Transfer
54
,
34
42
(
2011
).
10.
D. L.
Jing
and
L.
He
, “
Numerical studies on the hydraulic and thermal performances of microchannels with different cross-sectional shapes
,”
Int. J. Heat Mass Transfer
143
,
118604
(
2019
).
11.
Y. Y.
Wu
,
Z. P.
Guo
,
Y. P.
Huang
,
Y. M.
Lu
,
C.
Gao
,
W. T.
Guo
, and
F. L.
Niu
, “
Optimize the design analysis of hybrid fin structure microchannel heat exchanger
,”
Prog. Nucl. Energy
175
,
105333
(
2024
).
12.
Q.
Han
,
Z. X.
Liu
, and
W. M.
Li
, “
Enhanced thermal performance by spatial chaotic mixing in a saw-like microchannel
,”
Int. J. Therm. Sci.
186
,
108148
(
2023
).
13.
G. L.
Wang
,
Z. C.
Wang
,
L. Y.
Lai
,
D. D.
Xie
,
Y.
Zhu
,
G. F.
Ding
, and
Q.
Xu
, “
Experimental and numerical investigation of hydrothermal performance of a microchannel heat sink with pin fins
,”
Case Stud. Therm. Eng.
60
,
104631
(
2024
).
14.
Z. Y.
Guo
and
Z. X.
Li
, “
Size effect on single-phase channel flow and heat transfer at microscale
,”
Int. J. Heat Fluid Flow
24
,
284
298
(
2003
).
15.
L.
Shi
,
C. Z.
Hu
,
M. L.
Bai
, and
J. Z.
Lv
, “
Molecular dynamics study on drag reduction mechanism of nonwetting surfaces
,”
Comput. Mater. Sci.
170
,
109127
(
2019
).
16.
J. F.
Shen
,
C. M.
Wui
, and
Y. R.
Li
, “
Microscopic insight into mechanisms of heat and mass transfer improvement of dropwise condensation on a modified nanopillar surface
,”
Int. J. Heat Mass Transfer
219
,
124872
(
2024
).
17.
K.
Zhang
,
J.
Yang
, and
X.
Huai
, “
Surface topography controls bubble nucleation at rough water/silicon interfaces for different initial wetting states
,”
Int. J. Heat Mass Transfer
224
,
125323
(
2024
).
18.
S. C.
Li
,
C. C.
Lu
,
C.
Zhang
,
Z. H.
Li
,
J. H.
Zhao
,
J. G.
Chen
, and
N.
Wei
, “
Modeling and investigation of fluid flow affecting thermal boundary conductance at the solid-fluid interface
,”
Int. J. Heat Mass Transfer
213
,
124333
(
2023
).
19.
S. Y.
Qin
,
Z. X.
Chen
,
Q.
Wang
,
W. G.
Li
, and
H. W.
Xing
, “
Effect of surface structure on fluid flow and heat transfer in cold and hot wall nanochannels
,”
Int. Commun. Heat Mass Transfer
151
,
107257
(
2024
).
20.
S. T.
Yao
,
J. S.
Wang
, and
X. L.
Liu
, “
The impacting mechanism of surface properties on flow and heat transfer features in nanochannel
,”
Int. J. Heat Mass Transfer
176
,
121441
(
2021
).
21.
S. T.
Yao
,
J. S.
Wang
,
S. F.
Jin
,
F. G.
Tan
, and
S. P.
Chen
, “
Effect of surface coupling characteristics on the flow and heat transfer of nanochannel based on the orthogonal test
,”
Int. J. Therm. Sci.
203
,
109161
(
2024
).
22.
S. T.
Yao
,
J. S.
Wang
, and
X. L.
Liu
, “
Influence of nanostructure morphology on the heat transfer and flow characteristics in nanochannel
,”
Int. J. Therm. Sci.
165
,
106927
(
2021
).
23.
P.
Chakraborty
,
T. F.
Ma
,
L.
Cao
, and
Y.
Wang
, “
Significantly enhanced convective heat transfer through surface modification in nanochannels
,”
Int. J. Heat Mass Transfer
136
,
702
708
(
2019
).
24.
B. Y.
Cao
,
M.
Chen
, and
Z. Y.
Guo
, “
Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation
,”
Int. J. Eng. Sci.
44
,
927
937
(
2006
).
25.
Y. J.
Qin
,
J.
Zhao
,
Z.
Liu
,
C.
Wang
, and
H.
Zhang
, “
Study on effect of different surface roughness on nanofluid flow in nanochannel by using molecular dynamics simulation
,”
J. Mol. Liq.
346
,
117148
(
2022
).
26.
G.
Nagayama
and
P.
Cheng
, “
Effects of interface wettability on microscale flow by molecular dynamics simulation
,”
Int. J. Heat Mass Transfer
47
,
501
513
(
2004
).
27.
S. T.
Yao
,
J. S.
Wang
, and
X. L.
Liu
, “
The influence of wall properties on convective heat transfer in isothermal nanochannel
,”
J. Mol. Liq.
324
,
115100
(
2021
).
28.
C. D.
Marable
,
S.
Shin
, and
Y. A.
Nobakht
, “
Investigation into the microscopic mechanisms influencing convective heat transfer of water flow in graphene nanochannels
,”
Int. J. Heat Mass Transfer
109
,
28
39
(
2017
).
29.
Q. Q.
Sun
,
Y.
Zhao
,
K. S.
Choi
, and
X. R.
Mao
, “
Molecular dynamics simulation of liquid argon flow in a nanoscale channel
,”
Int. J. Therm. Sci.
170
,
107166
(
2021
).
30.
B.
Zhang
and
L. H.
Zhou
, “
Feature analysis of fractal surface roughness based on three-dimensional WM function
,”
J. Phys.: Conf. Ser.
1906
,
012020
(
2021
).
31.
L. Q.
Lou
,
P. J.
Chen
,
J.
Peng
,
J. M.
Zhu
, and
G. N.
Liu
, “
On the transport behavior of shale gas in nanochannels with fractal roughness
,”
Phys. Fluids
36
,
022041
(
2024
).
32.
M.
Ausloos
and
D. H.
Berman
, “
A multivariate Weierstrass-Mandelbrot function
,”
Proc. R. Soc. A
400
,
331
350
(
1985
).
33.
A.
Majumdar
and
C. L.
Tien
, “
Fractal characterization and simulation of rough surfaces
,”
Wear
136
,
313
327
(
1990
).
34.
S.
Ganti
and
B.
Bhushan
, “
Generalised fractal analysis and its application to engineering surfaces
,”
Wear
180
,
17
34
(
1995
).
35.
W. B.
Zhou
,
D. M.
Han
,
H. L.
Ma
,
Y. K.
Hu
, and
G. D.
Xia
, “
Molecular dynamics study on enhanced nucleate boiling heat transfer on nanostructured surfaces with rectangular cavities
,”
Int. J. Heat Mass Transfer
191
,
122814
(
2022
).
36.
S. S.
Miao
and
G. D.
Xia
, “
Molecular dynamics investigation of the effect of nanostructured surfaces on flow boiling
,”
J. Mol. Liq.
400
,
124457
(
2024
).
37.
P.
Bai
,
L. P.
Zhou
,
X. N.
Huang
, and
X. Z.
Du
, “
How wettability affects boiling heat transfer: A three-dimensional analysis with surface potential energy
,”
Int. J. Heat Mass Transfer
175
,
121391
(
2021
).
38.
B. R.
Novak
,
E. J.
Maginn
, and
M. J.
McCready
, “
An atomistic simulation study of the role of asperities and indentations on heterogeneous bubble nucleation
,”
ASME J. Heat Mass Transfer
130
,
042411
(
2008
).
39.
L. F.
Wu
,
Y. Z.
Tang
,
L. X.
Ma
,
S. Y.
Feng
, and
Y.
He
, “
Molecular dynamics simulation study on nanofilm boiling of water with insoluble gas
,”
Int. J. Therm. Sci.
171
,
107212
(
2022
).
40.
H. Y.
Sun
,
Z. K.
Liu
,
G. M.
Xin
,
Q.
Xin
,
J. Z.
Zhang
,
B. Y.
Cao
, and
X. Y.
Wang
, “
Thermal and flow characterization in nanochannels with tunable surface wettability: A comprehensive molecular dynamics study
,”
Numer. Heat Transfer, Part A
78
,
231
251
(
2020
).
41.
S. T.
Yao
,
J. S.
Wang
, and
X. L.
Liu
, “
Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel
,”
Appl. Energy
298
,
117183
(
2021
).
42.
W.
Yan
and
K.
Komvopoulos
, “
Contact analysis of elastic-plastic fractal surfaces
,”
J. Appl. Phys.
84
,
3617
3624
(
1998
).
43.
H. Q.
Liu
,
X. Y.
Qin
,
S.
Ahmad
,
Q.
Tong
, and
J. Y.
Zhao
, “
Molecular dynamics study about the effects of random surface roughness on nanoscale boiling process
,”
Int. J. Heat Mass Transfer
145
,
118799
(
2019
).
44.
J. L.
Yarnell
,
M. J.
Katz
,
R. G.
Wenzel
, and
S. H.
Koenig
, “
Structure factor and radial distribution function for liquid argon at 85 K
,”
Phys. Rev. A
7
,
2130
2144
(
1973
).
45.
G. V. C.
Ulises
and
R. A.
Bladimir
, “
Spectral mapping of thermal transport across SiC-water interfaces
,”
Int. J. Heat Mass Transfer
131
,
645
653
(
2019
).
46.
D. W.
Zhang
,
L. T.
Fu
,
J.
Guan
,
C.
Shen
, and
S. Z.
Tang
, “
Investigation on the heat transfer and energy-saving performance of microchannel with cavities and extended surface
,”
Int. J. Heat Mass Transfer
189
,
122712
(
2022
).
You do not currently have access to this content.