This study is based on two objective functions: minimizing heat transfer entropy production and minimizing viscous dissipation. The reverse-temperature equation and volumetric force sources are derived using variational methods for optimizing convective heat transfer in two-dimensional flows. Linear weights are adjusted to generate velocity and temperature fields corresponding to different performance metrics. The research demonstrates that the flow patterns determined through optimization effectively characterize optimal heat transfer performance under varying flow power consumption. Furthermore, compared to non-optimized flows, linear weights induce transitions in velocity and temperature fields from mild to highly perturbed states. Additionally, addressing the reverse-temperature equation with a negative diffusion coefficient that is challenging for traditional numerical methods, we utilize a physics-informed neural network strategy for solution. This approach significantly reduces the required grid resolution. The findings of this study can be applied to design passive techniques enhancing wall-to-fluid heat transfer and provide a novel approach for solving systems of mixed conventional and non-classical partial differential equations.

1.
L. M.
Liu
,
J.
Deng
,
D. L.
Zhang
,
C. L.
Wang
,
S. Z.
Qiu
, and
G. H.
Su
, “
Experimental analysis of flow and convective heat transfer in the water-cooled packed pebble bed nuclear reactor core
,”
Prog. Nucl. Energy
122
,
103298
(
2020
).
2.
Y.
Wang
,
X. Q.
Chen
,
X. B.
Qi
, and
J.
Zhou
, “
Numerical study on the effect of optimizing the Trombe wall structure with built-in fins on improving building energy efficiency in severe cold region
,”
Renewable Energy
222
,
119856
(
2024
).
3.
K.
Sampath
,
L.
Reynolds
,
H.-J.
Huang
, and
S.
Ramaswamy
, “
Experimental analysis of convective drying of paper and board
,”
Drying Technol.
42
(
5
),
880
895
(
2024
).
4.
T. N.
Yin
,
J.
Gong
,
L.
Wang
, and
J. B.
Zhang
, “
An analogy-based model for convective heat transfer coefficient in petroleum and chemical pipe
,”
Asian J. Chem.
24
(
4
),
1663
1667
(
2012
).
5.
J.
Oignet
,
H.
Hong Minh
,
V.
Osswald
,
A.
Delahaye
,
L.
Fournaison
, and
P.
Haberschill
, “
Experimental study of convective heat transfer coefficients of CO2 hydrate slurries in a secondary refrigeration loop
,”
Appl. Therm. Eng.
118
,
630
637
(
2017
).
6.
A. M.
Hussein
,
H. K.
Dawood
,
R. A.
Bakara
, and
K.
Kadirgamaa
, “
Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system
,”
Case Stud. Therm. Eng.
9
,
72
78
(
2017
).
7.
R.
Wang
,
X.
Fan
,
D.
Li
,
R.
Qu
,
L.
Li
, and
T.
Zou
, “
Convective heat transfer characteristics on end-winding of stator immersed oil-cooled electrical machines for aerospace applications
,”
IEEE Trans. Transp. Electrification
8
(
4
),
4265
4278
(
2022
).
8.
H.
Jiang
,
F.
Chen
,
J.
Yu
, and
Y.
Song
, “
Theoretical and numerical study on new evaluation criteria for longitudinal vortex enhanced heat transfer
,”
Int. J. Heat Mass Transfer
220
,
124977
(
2024
).
9.
H.
Daghooghi-Mobarakeh
,
M.
Daghooghi
,
M.
Miner
,
L.
Wang
,
R.
Wang
, and
P. E.
Phelan
, “
Augmentation of natural convection heat transfer in enclosures via ultrasound: Effects of power, frequency and temperature
,”
Therm. Sci. Eng. Prog.
33
,
101374
(
2022
).
10.
A. K.
Soti
,
R.
Bhardwaj
, and
J.
Sheridan
, “
Flow-induced deformation of a flexible thin structure as manifestation of heat transfer enhancement
,”
Int. J. Heat Mass Transfer
84
,
1070
1081
(
2015
).
11.
P.
Xie
and
X.
Zhang
, “
Study of laminar convection heat transfer in single-side-heating small-scale cooling channel with vibration cylinder
,”
Int. Commun. Heat Mass Transfer
120
,
105030
(
2021
).
12.
H. S.
Sheriff
and
D. A.
Zumbrunnen
, “
Local and instantaneous heat transfer characteristics of arrays of pulsating jets
,”
ASME J. Heat Transfer
121
(
2
),
341
348
(
1999
).
13.
L.-M.
Chang
,
L.-B.
Wang
,
K.-W.
Song
,
D.-L.
Sun
, and
J.-F.
Fan
, “
Numerical study of the relationship between heat transfer enhancement and absolute vorticity flux along main flow direction in a channel formed by a flat tube bank fin with vortex generators
,”
Int. J. Heat Mass Transfer
52
(
7–8
),
1794
1801
(
2009
).
14.
S.-S.
Hsieh
,
C.-F.
Huang
, and
J.-S.
Pan
, “
Low Reynolds numbers convective heat transfer in single/two-phase roughened microchannels
,”
Appl. Therm. Eng.
198
,
117468
(
2021
).
15.
S. G.
Etemad
,
B.
Farajollahi
,
M.
Hajipour
, and
J.
Thibault
, “
Turbulent convective heat transfer of suspensions of γ-Al2O3 and CuO nanoparticles (nanofluids)
,”
J. Enhanced Heat Transfer
19
(
3
),
191
197
(
2012
).
16.
P.
Francisco
,
L.
Faria
, and
R.
Simoes
, “
Multi-objective and multi-load topology optimization and experimental validation of homogenized coupled fluid flow and heat transfer and structural stiffness
,”
Struct. Multidiscip. Optim.
62
(
5
),
2571
2598
(
2020
).
17.
C.
Liu
,
W.
Bu
, and
D.
Xu
, “
Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm
,”
Int. J. Heat Mass Transfer
111
,
65
82
(
2017
).
18.
M.
Mehrabi
,
M.
Sharifpur
, and
J. P.
Meyer
, “
Modelling and multi-objective optimisation of the convective heat transfer characteristics and pressure drop of low concentration TiO2-water nanofluids in the turbulent flow regime
,”
Int. J. Heat Mass Transfer
67
,
646
653
(
2013
).
19.
N.
Jamshidi
,
M.
Farhadi
,
K.
Sedighi
, and
D. D.
Ganji
, “
Optimization of design parameters for nanofluids flowing inside helical coils
,”
Int. Commun. Heat Mass Transfer
39
(
2
),
311
317
(
2012
).
20.
K.
Ceylan
and
G.
Kelbaliyev
, “
The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes
,”
Appl. Therm. Eng.
23
(
5
),
557
570
(
2003
).
21.
Z.
Wan
,
Y.
Yang
,
X.
Wang
,
S.
Tao
, and
H.
Chen
, “
A novel ladder-shaped bridge finned tube for convective heat transfer enhancement
,”
ASME J. Heat Mass Transfer
145
(
7
),
072001
(
2023
).
22.
H. J.
Hupkes
and
E. S.
Van Vleck
, “
Negative diffusion and traveling waves in high dimensional lattice systems
,”
Siam J. Math. Anal.
45
(
3
),
1068
1135
(
2013
).
23.
V. B.
Dung
and
D.
Van Thien
, “
The equation of backward diffusion and negative diffusivity
,” in
1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics
(
2014
).
24.
K.
Dao
and
V. B.
Dung
, “
Preliminary results of numerical profiles for the simultaneous diffusion of boron and point defects in silicon using irreversible thermodynamic theory
,” Defect and Diffusion Forum, 194–199, 647–652 (
2001
).
25.
A.
Iomin
and
E.
Baskin
, “
Negative superdiffusion due to inhomogeneous convection
,”
Phys. Rev. E
71
(6),
061101
(
2005
).
26.
V. G.
Karpov
, “
Negative diffusion and clustering of growing particles
,”
Phys. Rev. Lett.
75
(
14
),
2702
2705
(
1995
).
27.
G.
Kraaijeveld
,
J. A.
Wesselingh
, and
G. D. C.
Kuiken
, “
Negative Maxwell-Stefan diffusion-coefficients - comments
,”
Ind. Eng. Chem. Res.
33
(
3
),
750
751
(
1994
).
28.
H.
Mohammed
,
A.
Belkacem
,
K.
Noureddine
, and
B.
Elhadj
, “
Control volume finite element method for a benchmark validation of a natural convection in a square cavity
,”
Energy Procedia
139
,
511
516
(
2017
).
29.
G. E.
Schneider
and
M. J.
Raw
, “
A skewed, positive influence coefficient upwinding procedure for control-volume-based finite-element convection-diffusion computation
,”
Numer. Heat Transfer
9
(
1
),
1
26
(
1986
).
30.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations
,” arXiv:abs/1711.10561 (
2017
).
31.
G.
Karniadakis
and
S.
Sherwin
,
Spectral/HP Element Methods for Computational Fluid Dynamics
(
Oxford University Press
,
2005
).
32.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,”
Comput. Sci.
(
2014
).
33.
S.
Wang
,
Y.
Teng
, and
P.
Perdikaris
, “
Understanding and mitigating gradient pathologies in physics-informed neural networks
,”
Siam J. Sci. Comput.
43
(
5
),
3055
3081
(
2021
).
You do not currently have access to this content.