In many engineering applications, including coating and lubrication operations, analyzing the temperature behavior of thin film flows on a vertically upward-moving tube is crucial to improving predictive models. This paper examines a steady third-grade fluid film flow with a surface tension gradient on a vertical tube. The mechanisms responsible for the fluid motion are upward tube motion, gravity, and surface tension gradient. This analysis focuses on heat transfer and stagnant ring dynamics. The formulated highly nonlinear ordinary differential equations are solved using the Adomian decomposition method. The conditions for stagnant rings and uniform film thickness are attained and discussed. The inverse capillary number C, Stokes number St, Deborah number De, and Brinkman number Br emerged as flow control parameters. The temperature of the fluid film rises with an increase in the C, St, De, and Br, whereas it decreases with an increase in thermal diffusion rate. The radius of stagnant rings tends to shrink by the increase in C, St, and De. When the value of De is high, third-grade fluid behaves like solids; only free drainage happens with smaller radius stagnant rings and high temperatures. A comparison between Newtonian and third-grade fluids regarding surface tension, velocity, temperature, stationary rings, and fluid film thickness is also provided.

1.
V. G.
Rifert
,
V. I.
Podberezny
,
J. V.
Putilin
,
J. G.
Nikitin
, and
P. A.
Barabash
, “
Heat transfer in thin film-type evaporator with profile tubes
,”
Desalination
74
,
363
372
(
1989
).
2.
R.
Krupiczka
,
A.
Rotkegel
, and
Z.
Ziobrowski
, “
Heat transfer to evaporating liquid films within a vertical tube
,”
Chem. Eng. Process.
41
(
1
),
23
28
(
2002
).
3.
R. J.
Goldstein
,
E. R. G.
Eckert
,
W. E.
Ibele
,
S. V.
Patankar
,
T. W.
Simon
,
T. H.
Kuehn
, and
V.
Srinivasan
, “
Heat transfer—A review of 2002 literature
,”
Int. J. Heat Mass Transfer
48
(
5
),
819
927
(
2005
).
4.
T. V.
Prevenslik
, “
Heat transfer in thin films
,” in
2009 Third International Conference on Quantum, Nano and Micro Technologies
(
IEEE
,
2009
), pp.
73
76
.
5.
T.
Gul
,
S.
Islam
,
R. A.
Shah
,
I.
Khan
, and
S.
Shafie
, “
Thin film flow in MHD third grade fluid on a vertical belt with temperature dependent viscosity
,”
PLoS One
9
(
6
),
e97552
(
2014
).
6.
H.
Ashraf
,
S.
Sabir
,
A. M.
Siddiqui
,
H. U.
Rehman
,
B.
Almutairi
, and
N. A.
Shah
, “
Heat transfer analysis of temperature dependent viscosity Johnson–Segalman fluid film flow on a vertical heated belt
,”
Case Stud. Therm. Eng.
49
,
103362
(
2023
).
7.
H.
Ashraf
,
D.
Chou
,
R.
Hameed
,
H. U.
Rehman
,
A. U.
Awan
, and
A. M.
Sultan
, “
Flow analysis of temperature-dependent variable viscosity Phan Thien Tanner fluid thin film over a horizontally moving heated plate
,”
Case Stud. Therm. Eng.
60
,
104726
(
2024
).
8.
H.
Ashraf
,
A.
Parveen
,
H. U.
Rehman
,
M. I.
Asjad
,
B. N.
Almutairi
, and
B.
Almohsen
, “
Analysis of uniform film thickness and stationary points for the thin film flow of Carreau fluid model in the presence of surface tension gradient
,” (published online,
2022
).
9.
H.
Ashraf
,
A.
Siddiqa
,
H. U.
Rehman
,
A. M.
Siddiqui
, and
J. U.
Rahman
, “
Lifting and drainage of Sisko fluid film with surface tension: A theoretical study on stationary points and thickness of uniform film
,”
Int. J. Mod. Phys. B
37
(
26
),
2350304
(
2023
).
10.
A.
Walait
,
H.
Ashraf
,
D.
Chou
, and
H. U.
Rehman
, “
Stagnant rings and uniform film analysis of Phan-Thien Tanner fluid film flow on a vertically upward moving tube
,”
Phys. Fluids
36
,
083613
(
2024
).
11.
H.
Ashraf
,
N. A.
Shah
,
A. M.
Siddiqui
,
H. U.
Rehman
, and
N. B.
Turki
, “
Analysis of heat transfer in n-immiscible layers of a horizontal Jeffrey fluid film flow
,”
Case Stud. Therm. Eng.
51
,
103662
(
2023
).
12.
H.
Ashraf
,
N. A.
Shah
,
M.
Shahzadi
,
H. U.
Rehman
,
A.
Ali
,
M. D.
Kumar
, and
B. C.
Prasannakumara
, “
Film lifting and drainage of third-grade fluid on a vertical belt with surface tension
,”
Mod. Phys. Lett. B
(published online,
2024
).
13.
K. R.
Rajagopal
, “
Mechanics of non–Newtonian fluids
,” in
Recent Developments in Theoretical Fluid Mechanics
(
Chapman and Hall/CRC
,
1993
), pp.
129
162
.
14.
T. G.
Myers
, “
Application of non-Newtonian models to thin film flow
,”
Phys. Rev. E
72
(
6
),
066302
(
2005
).
15.
A.
Farina
,
A.
Mikelić
,
G.
Saccomandi
,
A.
Sequeira
, and
E. F.
Toro
,
Non-Newtonian Fluid Mechanics and Complex Flows
(
Springer International Publishing
,
Cham, Switzerland
2018
).
16.
K. R.
Rajagopal
, “
Viscometric flows of third grade fluids
,”
Mech. Res. Commun.
7
(
1980
),
21
25
(
1980
).
17.
R. L.
Fosdick
and
K. R.
Rajagopal
, “
Thermodynamics and stability of fluids of third grade
,”
Proc. R. Soc. London, Ser. A
369
(
1738
),
351
377
(
1980
).
18.
F. T.
Akyıldız
,
H.
Demir
, and
V. S.
Ertürk
, “
Peristaltic flow of a third-grade fluid in a planar channel
,”
Math. Comput. Appl.
4
(
2
),
113
120
(
1999
).
19.
M. K.
Nayak
,
G. C.
Dash
, and
L. P.
Singh
, “
Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with temperature dependent viscosity
,”
Int. J. Heat Mass Transfer
79
,
1087
1095
(
2014
).
20.
M.
Bilal
,
M.
Sagheer
, and
S.
Hussain
, “
Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity
,”
Alexandria Eng. J.
57
(
4
),
3281
3289
(
2018
).
21.
H.
Ashraf
,
A. M.
Siddiqui
, and
M. A.
Rana
, “
Fallopian tube analysis of the peristaltic-ciliary flow of third grade fluid in a finite narrow tube
,”
Chin. J. Phys.
56
(
2
),
605
621
(
2018
).
22.
J. H.
He
, “
Some asymptotic methods for strongly nonlinear equations
,”
Int. J. Mod. Phys. B
20
(
10
),
1141
1199
(
2006
).
23.
A. M.
Siddiqui
,
R.
Mahmood
, and
Q. K.
Ghori
, “
Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane
,”
Chaos, Solitons Fractals
35
(
1
),
140
147
(
2008
).
24.
H.
Nemati
,
M.
Ghanbarpour
, and
M.
Hajibabayi
, “
Thin film flow of non-Newtonian fluids on a vertical moving belt using Homotopy Analysis Method
,”
J. Eng. Sci. Technol. Rev.
2
(
1
),
118
122
(
2009
).
25.
A. M.
Siddiqui
,
A. A.
Farooq
,
T.
Haroon
, and
B. S.
Babcock
, “
A comparison of variational iteration and Adomian decomposition methods in solving nonlinear thin film flow problems
,”
Appl. Math. Sci.
6
(
99
),
4911
4919
(
2012
).
26.
F.
Mabood
, “
Comparison of optimal homotopy asymptotic method and homotopy perturbation method for strongly non-linear equation
,”
J. Assoc. Arab Univ. Basic Appl. Sci.
16
,
21
26
(
2014
).
27.
L.
Liu
,
S.
Chen
,
J.
Yang
,
S.
Zhang
,
L.
Feng
,
X.
Si
, and
L.
Zheng
, “
Insight into the significance of absorbing boundary condition for the flow mechanism analysis of fractional Maxwell fluid over a semi-infinite plate
,”
Phys. Fluids
35
(
5
),
053105
(
2023
).
28.
L.
Liu
,
S.
Zhang
,
J.
Wang
,
L.
Feng
, and
C.
Xie
, “
Construction of the absorbing boundary condition for the flow of Oldroyd-B fluid over a semi-infinite plate with magnetic effect
,”
Phys. Fluids
36
(
4
),
043118
(
2024
).
29.
C.
Bao
,
L.
Liu
,
J.
Zhu
,
L.
Feng
, and
C.
Xie
, “
Analysis of magnetic fluid heat transfer in biological tissues subjected to a semi-infinite region by artificial boundary method
,”
Int. J. Heat Mass Transfer
229
,
125668
(
2024
).
30.
G.
Adomian
, “
Analytical solutions for ordinary and partial differential equations
,” in
Differential Equations and Mathematical Physics: Proceedings of an International Conference Held in Birmingham, Alabama, USA March 3–8, 1986
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2006
), pp.
1
15
.
31.
M. M.
Hosseini
and
H.
Nasabzadeh
, “
On the convergence of Adomian decomposition method
,”
Appl. Math. Comput.
182
(
1
),
536
543
(
2006
).
32.
A. M.
Wazwaz
,
Partial Differential Equations and Solitary Waves Theory
(
Springer Science & Business Media
,
2010
).
33.
J. S.
Duan
and
R.
Rach
, “
A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations
,”
Appl. Math. Comput.
218
(
8
),
4090
4118
(
2011
).
34.
J. S.
Duan
,
R.
Rach
, and
A. M.
Wazwaz
, “
A new modified Adomian decomposition method for higher-order nonlinear dynamical systems
,”
Comput. Model. Eng. Sci.
94
(
1
),
77
118
(
2013
).
You do not currently have access to this content.