Detecting the flow regimes of Newtonian turbulence (NT), elasto-inertial filament (EIF), elasto-inertial turbulence (EIT), and maximum drag reduction (MDR) of polymer solution and their transition has been a hot topic in the last decade. We attempted to detect NT, EIF, EIT, and MDR by visualizing vortex shedding downstream of an array of cylinders that was inserted perpendicular to polymer-doped two-dimensional (2D) flow. Since polymers are stretched at the cylinders, the consequent vortex shedding is affected by viscoelasticity. The flow regimes are characterized based on Weissenberg (Wi) and Reynolds numbers (Re) with the relaxation time of the polymeric solution estimated from capillary-thinning experiments. The flow regimes are observed for different molecular weights of polyethylene oxide and polyacrylamide in solution and are categorized as either vortex type 1, type 2, and type 3 on a ReWi map based on flow visualization using particle image velocimetry. In addition, turbulent statistics of these flow regimes are calculated to more fully quantify these flow regimes. We found that vortex types from 1 to 3 have a similarity to NT, EIF, EIT, and MDR. In addition, characteristic turbulent energy transfer without an increase in turbulent energy production was found in the flow regimes of vortex types 2 and 3 of each polymer solution. Our results suggest intriguing parallels between pipe, jet, and 2D turbulent flow for drag-reducing polymeric solutions.

1.
P. S.
Virk
,
E. W.
Merrill
,
H. S.
Mickley
,
K. A.
Smith
, and
E. L.
Mollo-Christensen
, “
The Toms phenomenon: Turbulent pipe flow of dilute polymer solutions
,”
J. Fluid Mech.
30
,
305
328
(
1967
).
2.
F. T.
Pinho
and
J. H.
Whitelaw
, “
Flow of non-Newtonian fluids in a pipe
,”
J. Non-Newtonian Fluid Mech.
34
,
129
144
(
1990
).
3.
T.
Min
,
J. Y.
Yoo
,
H.
Choi
, and
D. D.
Joseph
, “
Drag reduction by polymer additives in a turbulent channel flow
,”
J. Fluid Mech.
486
,
213
238
(
2003
).
4.
C. H.
Hong
,
C. H.
Jang
, and
H. J.
Choi
, “
Turbulent drag reduction with polymers in rotating disk flow
,”
Polymers
7
,
1279
1298
(
2015
).
5.
C. F.
Li
,
R.
Sureshkumar
, and
B.
Khomami
, “
Simple framework for understanding the universality of the maximum drag reduction asymptote in turbulent flow of polymer solutions
,”
Phys. Rev. E
92
,
043014
(
2015
).
6.
Y.
Shah
,
S.
Ghaemi
, and
S.
Yarusevych
, “
Three-dimensional characterization of Reynolds shear stress in near-wall coherent structures of polymer drag reduced turbulent boundary layers
,”
Exp. Fluids
62
,
166
(
2021
).
7.
S.
Shaban
,
M.
Azad
,
J.
Trivedi
, and
S.
Ghaemi
, “
Investigation of near-wall turbulence in relation to polymer rheology
,”
Phys. Fluids
30
,
125111
(
2018
).
8.
L.
Xi
, “
Turbulent drag reduction by polymer additives: Fundamentals and recent advances
,”
Phys. Fluids
31
,
121302
(
2019
).
9.
A.
Shahmardi
,
S.
Zade
,
M. N.
Ardekani
,
R. J.
Poole
,
F.
Lundell
,
M. E.
Rosti
, and
L.
Brandt
, “
Turbulent duct flow with polymers
,”
J. Fluid Mech.
859
,
1057
(
2019
).
10.
B. E.
Owolabi
,
D. J. C.
Dennis
, and
R. J.
Poole
, “
Turbulent drag reduction by polymer additives in parallel-shear flows
,”
J. Fluid Mech.
827
,
R4
(
2017
).
11.
A.
Japper-Jaafara
,
M. P.
Escudier
, and
R. J.
Poole
, “
Laminar, transitional and turbulent annular flow of drag-reducing polymer solutions
,”
J. Non-Newtonian Fluid Mech.
165
,
1357
1372
(
2010
).
12.
L.
Zhu
and
L.
Xi
, “
Nonasymptotic elastoinertial turbulence for asymptotic drag reduction
,”
Phys. Rev. Fluids
6
,
014601
(
2021
).
13.
L.
Zhu
and
L.
Xi
, “
Vortex dynamics in low- and high-extent polymer drag reduction regimes revealed by vortex tracking and conformation analysis
,”
Phys. Fluids
31
,
095103
(
2019
).
14.
L.
Zhu
,
X.
Bai
,
E.
Krushelnycky
, and
L.
Xi
, “
Transient dynamics of turbulence growth and bursting: Effects of drag-reducing polymers
,”
J. Non-Newtonian Fluid Mech.
266
,
127
142
(
2019
).
15.
K.
Kim
,
C.-F.
Li
,
R.
Sureshkumar
,
S.
Balachandar
, and
R. J.
Adrian
, “
Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow
,”
J. Fluid Mech.
584
,
281
299
(
2007
).
16.
Y.
Dubief
,
V. E.
Terrapon
,
C. M.
White
,
E. S. G.
Shaqfeh
,
P.
Moin
, and
S. K.
Lele
, “
New answers on the interaction between polymers and vortices in turbulent flows
,”
Flow, Turbul. Combust.
74
,
311
329
(
2005
).
17.
C. M.
White
,
V. S. R.
Somandepalli
, and
M. G.
Mungal
, “
The turbulence structure of drag-reduced boundary layer flow
,”
Exp. Fluids
36
,
62
69
(
2004
).
18.
M.
Mohammadtabar
,
R. S.
Sanders
, and
S.
Ghaemi
, “
Turbulent structures of non-Newtonian solutions containing rigid polymers
,”
Phys. Fluids
29
,
103101
(
2017
).
19.
H.
Usui
,
T.
Shibata
, and
Y.
Sano
, “
Kármán vortex behind a circular cylinder in dilute polymer solutions
,”
J. Chem. Eng. Jpn.
13
,
77
79
(
1980
).
20.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids. III Pressure measurements
,”
J. Non-Newtonian Fluid Mech.
121
,
55
68
(
2004
).
21.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids: I. Identification and demarcation of flow regimes
,”
J. Non-Newtonian Fluid Mech.
110
,
143
176
(
2003
).
22.
A.
Varshney
and
V.
Steinberg
, “
Drag enhancement and drag reduction in viscoelastic flow
,”
Phys. Rev. Fluids
3
,
103302
(
2018
).
23.
R.
Hidema
,
K.
Fukushima
,
R.
Yoshida
, and
H.
Suzuki
, “
Vortex deformation and turbulent energy of polymer solution in a two-dimensional turbulent flow
,”
J. Non-Newtonian Fluid Mech.
285
,
104385
(
2020
).
24.
Y.
Asano
,
H.
Watanabe
, and
H.
Noguchi
, “
Polymer effects on Kármán vortex: Molecular dynamics study
,”
J. Chem. Phys.
148
,
144901
(
2018
).
25.
J. R.
Cressman
,
Q.
Bailey
, and
W. I.
Goldburg
, “
Modification of a vortex street by a polymer additive
,”
Phys. Fluids
13
,
867
871
(
2001
).
26.
M.
Brede
,
H.
Eckelmann
, and
D.
Rockwell
, “
On secondary vortices in the cylinder wake
,”
Phys. Fluids
8
,
2117
2124
(
1996
).
27.
C. H. K.
Williamson
, “
Three-dimensional wake transition
,”
J. Fluid Mech.
328
,
345
407
(
1996
).
28.
D.
Richter
,
G.
Iaccarino
, and
E. S. G.
Shaqfeh
, “
Effects of viscoelasticity in the high Reynolds number cylinder wake
,”
J. Fluid Mech.
693
,
297
318
(
2012
).
29.
D.
Richter
,
G.
Iaccarino
, and
E. S. G.
Shaqfeh
, “
Simulations of three-dimensional viscoelastic flows past a circular cylinder at moderate Reynolds numbers
,”
J. Fluid Mech.
651
,
415
442
(
2010
).
30.
O.
Cadot
and
M.
Lebey
, “
Shear instability inhibition in a cylinder wake by local injection of a viscoelastic fluid
,”
Phys. Fluids
11
,
494
496
(
1999
).
31.
O.
Cadot
and
S.
Kumar
, “
Experimental characterization of viscoelastic effects on two- and three-dimensional shear instabilities
,”
J. Fluid Mech.
416
,
151
172
(
1997
).
32.
P. M.
Coelho
and
F. T.
Pinho
, “
Vortex shedding in cylinder flow of shear-thinning fluids: II. Flow characteristics
,”
J. Non-Newtonian Fluid Mech.
110
,
177
193
(
2003
).
33.
P. J.
Oliveira
, “
Method for time-dependent simulations of viscoelastic flows: Vortex shedding behind cylinder
,”
J. Non-Newtonian Fluid Mech.
101
,
113
137
(
2001
).
34.
R.
Hidema
,
I.
Murao
,
Y.
Komoda
, and
H.
Suzuki
, “
Effects of the extensional rheological properties of polymer solutions on vortex shedding and turbulence characteristics in a two-dimensional turbulent flow
,”
J. Non-Newtonian Fluid Mech.
254
,
1
11
(
2018
).
35.
Y. L.
Xiong
,
C. H.
Bruneau
, and
H.
Kellay
, “
A numerical study of two dimensional flows past a bluff body for dilute polymer solutions
,”
J. Non-Newtonian Fluid Mech.
196
,
8
26
(
2013
).
36.
Y. L.
Xiong
,
C. H.
Bruneau
, and
H.
Kellay
, “
Direct numerical simulations of 2D channel flows in the presence of polymers
,”
Europhys. Lett.
95
,
64003
(
2011
).
37.
Y. L.
Xiong
,
C. H.
Bruneau
, and
H.
Kellay
, “
Drag enhancement and drag reduction in viscoelastic fluid flow around a cylinder
,”
Europhys. Lett.
91
,
64001
(
2010
).
38.
P.
Pakdel
and
G. H.
McKinley
, “
Elastic instability and curved streamlines
,”
Phys. Rev. Lett.
77
,
2459
(
1996
).
39.
S. J.
Haward
,
G. H.
McKinley
, and
A. Q.
Shen
, “
Elastic instabilities in planar elongational flow of monodisperse polymer solutions
,”
Nature
6
,
33029
(
2016
).
40.
M.
Davoodi
,
G.
Houston
,
J.
Downie
,
M. S. N.
Oliveira
, and
R. J.
Poole
, “
Stabilization of purely elastic instabilities in cross-slot geometries
,”
J. Fluid Mech.
922
,
A12
(
2021
).
41.
F. J.
Galindo-Rosales
,
L.
Campo-Deaño
,
P. C.
Sousa
,
V. M.
Ribeiro
,
M. S. N.
Oliveira
,
M. A.
Alves
, and
F. T.
Pinho
, “
Viscoelastic instabilities in micro-scale flows
,”
Exp. Therm. Fluid Sci.
59
,
128
139
(
2014
).
42.
N. K.
Jha
and
V.
Steinberg
, “
Elastically driven Kelvin–Helmholtz-like instability in straight channel flow
,”
Proc. Natl. Acad. Sci.
118
(
34
),
e2105211118
(
2021
).
43.
C. A.
Browne
,
A.
Shih
, and
S. S.
Datta
, “
Pore-scale flow characterization of polymer solutions in microfluidic porous media
,”
Small
16
,
e1903944
(
2020
).
44.
R.
Hidema
,
T.
Oka
,
Y.
Komoda
, and
H.
Suzuki
, “
Effects of flexibility and entanglement of sodium hyaluronate in solutions on the entry flow in micro abrupt contraction-expansion channels
,”
Phys. Fluids
31
,
072005
(
2019
).
45.
L.
Pan
,
A.
Morozov
,
C.
Wagner
, and
P. E.
Arratia
, “
Nonlinear elastic instability in channel flows at low Reynolds numbers
,”
Phys. Rev. Lett.
110
,
174502
(
2013
).
46.
D.
Samanta
,
Y.
Dubief
,
M.
Holzner
,
C.
Schäfer
,
A. N.
Morozov
,
C.
Wagner
, and
B.
Hof
, “
Elasto-inertial turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
10557
(
2013
).
47.
M. D.
Graham
, “
Drag reduction and the dynamics of turbulence in simple and complex fluids
,”
Phys. Fluids
26
,
101301
(
2014
).
48.
G. H.
Choueiri
,
J. M.
Lopez
, and
B.
Hof
, “
Exceeding the asymptotic limit of polymer drag reduction
,”
Phys. Rev. Lett.
120
,
124501
(
2018
).
49.
P. S.
Virk
, “
Drag reduction fundamentals
,”
AIChE J.
21
,
625
656
(
1975
).
50.
S.
Yamani
,
B.
Keshavarz
,
Y.
Raj
,
T. A.
Zaki
,
G. H.
McKinley
, and
I.
Bischofberger
, “
Spectral universality of elastoinertial turbulence
,”
Phys. Rev. Lett.
127
,
074501
(
2021
).
51.
S.
Yamani
,
Y.
Raj
,
T. A.
Zaki
,
G. H.
McKinley
, and
I.
Bischofberger
, “
Spatiotemporal signatures of elastoinertial turbulence in viscoelastic planar jets
,”
Phys. Rev. Fluids
8
,
064610
(
2023
).
52.
R.
Hidema
, “
Interactions between polymers and flows in macro and micro length scales
,”
Sci. Talks
3
,
100040
(
2022
).
53.
R.
Hidema
,
H.
Suzuki
,
I.
Murao
,
S.
Hisamatsu
, and
Y.
Komoda
, “
Effects of extensional rates on anisotropic structures and characteristic scales of two-dimensional turbulence in polymer solutions
,”
Flow, Turbul. Combust.
96
,
227
244
(
2016
).
54.
R.
Hidema
,
H.
Suzuki
,
S.
Hisamatsu
, and
Y.
Komoda
, “
Characteristic scales of two-dimensional turbulence in polymer solutions
,”
AIChE J.
60
,
1854
1862
(
2014
).
55.
R.
Hidema
,
H.
Suzuki
,
S.
Hisamatsu
,
Y.
Komoda
, and
H.
Furukawa
, “
Effects of the extensional rate on two-dimensional turbulence of semi-dilute polymer solution flows
,”
Rheol. Acta
52
,
949
961
(
2013
).
56.
K.
Fukushima
,
H.
Kishi
,
H.
Suzuki
, and
R.
Hidema
, “
Modification of turbulence caused by cationic surfactant wormlike micellar structures in two-dimensional turbulent flow
,”
J. Fluid Mech.
933
,
A9
(
2022
).
57.
J.
Dinic
,
Y.
Zhang
,
L. N.
Jimenez
, and
V.
Sharma
, “
Extensional relaxation times of dilute, aqueous polymer solutions
,”
ACS Macro Lett.
4
,
804
808
(
2015
).
58.
M. A.
Rutgers
,
X.-L.
WU
,
R.
Bhagavatula
,
A. A.
Petersen
, and
W. I.
Goldburg
, “
Two-dimensional velocity profiles and laminar boundary layers in flowing soap films
,”
Phys. Fluids
8
,
2847
2854
(
1996
).
59.
N.
François
,
D.
Lasne
,
Y.
Amarouchene
,
B.
Lounis
, and
H.
Kellay
, “
Drag enhancement with polymers
,”
Phys. Rev. Lett.
100
,
018302
(
2008
).
60.
M.
Rivera
,
P.
Vorobieff
, and
R. E.
Ecke
, “
Turbulence in flowing soap films: Velocity, vorticity, and thickness fields
,”
Phys. Rev. Lett.
81
,
1417
(
1998
).
61.
C.
Clasen
,
J. P.
Plog
,
W.-M.
Kulicke
,
M.
Owens
,
C.
Macosko
,
L. E.
Scriven
,
M.
Verani
, and
G. H.
McKinley
, “
How dilute are dilute solutions in extensional flows?
,”
J. Rheol.
50
,
849
881
(
2006
).
62.
S.
Sur
and
J.
Rothstein
, “
Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity
,”
J. Rheol.
62
,
1245
1259
(
2018
).
63.
H.
Sato
,
M.
Kawata
,
R.
Hidema
, and
H.
Suzuki
, “
Effect of the channel geometries on flow regimes of a viscoelastic surfactant solution in a cavity
,”
J. Non-Newtonian Fluid Mech.
310
,
104946
(
2022
).
64.
X.
Shi
,
S.
Kenney
,
G.
Chapagain
, and
G. F.
Christopher
, “
Mechanisms of onset for moderate Mach number instabilities of viscoelastic flows around confined cylinders
,”
Rheol. Acta
54
,
805
815
(
2015
).
65.
G.
Yin
,
Y.
Nakamura
,
H.
Suzuki
,
F.
Lequeux
, and
R.
Hidema
, “
Memory and scission effects of polymers on the flow regime of polyethylene oxide solutions in continuous abrupt contraction–expansion microchannels with different cavity length
,”
Phys. Fluids
36
,
043114
(
2024
).
66.
R. K.
Singh
,
P.
Perlekar
,
D.
Mitra
, and
M. E.
Rosti
, “
Intermittency in the not-so-smooth elastic turbulence
,”
Nat. Commun.
15
,
4070
(
2024
).
67.
J. H.
Gerrard
, “
The mechanics of the formation region of vortices behind bluff bodies
,”
J. Fluid Mech.
25
,
401
(
1966
).
You do not currently have access to this content.