This study deals with the impact of a microgel particle-laden drop of the water–agar solution onto nanofiber mats of different wettability at Weber numbers in the range of 14–502 and initial velocities in the range of 0.32–1.83 m/s. We examined the effects of inertia and the competition between the wetting and antiwetting pressures within the liquid impalement on the hydrodynamic behavior of drops in the spreading and contraction phases. Hydrophilic mat representing a full water absorption coating is manufactured by electrospinning from a mixture of polycaprolactone and polyvinylpyrrolidone; hydrophobic—from polytetrafluoroethylene. The micro- and nanoscale characteristics of nanofiber mats are analyzed by scanning electron microscopy and atomic force microscopy, respectively. A physical model of liquid flow under an impacting microgel particle-laden drop along and inside the micro- and nanostructures of nanofiber mats is proposed. Empirical expressions for the prediction of drop impact hydrodynamics are derived. By introducing the impalement factor, which is physically close to the Euler number, they take into account the difference between wetting and anti-wetting pressures in addition to inertia. Microgel particle-laden drop deposition accounting for the effect of liquid impalement inside nanofiber materials with different wettability is expected to enhance the efficiency of bioprinting polymer layers in tissue engineering.

1.
P. G.
Pittoni
,
Y.-C.
Lin
, and
S.-Y.
Lin
, “
The impalement of water drops impinging onto hydrophobic/superhydrophobic graphite surfaces: The role of dynamic pressure, hammer pressure and liquid penetration time
,”
Appl. Surf. Sci.
301
,
515
524
(
2014
).
2.
M.
Reyssat
,
A.
Pépin
,
F.
Marty
,
Y.
Chen
, and
D.
Quéré
, “
Bouncing transitions on microtextured materials
,”
Europhys. Lett.
74
(
2
),
306
(
2006
).
3.
M.
Reyssat
,
J. M.
Yeomans
, and
D.
Quéré
, “
Impalement of fakir drops
,”
Europhys. Lett.
81
(
2
),
26006
(
2007
).
4.
M.
Heinz
,
P.
Stephan
, and
T.
Gambaryan-Roisman
, “
Influence of nanofiber coating thickness and drop volume on spreading, imbibition, and evaporation
,”
Colloids Surf. A
631
,
127450
(
2021
).
5.
A.
Kumar
,
J.
Kleinen
,
J.
Venzmer
,
A.
Trybala
,
V.
Starov
, and
T.
Gambaryan-Roisman
, “
Spreading and imbibition of vesicle dispersion droplets on porous substrates
,”
Colloids Interfaces
3
(
3
),
53
(
2019
).
6.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
(
1
),
112
124
(
2002
).
7.
C.
Waldner
and
U.
Hirn
, “
Ultrasonic liquid penetration measurement in thin sheets—Physical mechanisms and interpretation
,”
Materials
13
(
12
),
2754
(
2020
).
8.
C.
Waldner
,
A.
Mayrhofer
, and
U.
Hirn
, “
Measuring liquid penetration in thin, porous sheets with ultrasound and drop absorption—Scope and limitations
,”
Colloids Surf. A
650
,
129551
(
2022
).
9.
R.
Nicasy
,
H. P.
Huinink
,
S. J. F.
Erich
, and
O. C. G.
Adan
, “
High-speed NMR imaging of capillary action in thin nontransparent porous media
,”
Phys. Rev. E
104
(
4
),
L043101
(
2021
).
10.
C.
Antonini
,
F.
Villa
,
I.
Bernagozzi
,
A.
Amirfazli
, and
M.
Marengo
, “
Drop rebound after impact: The role of the receding contact angle
,”
Langmuir
29
(
52
),
16045
16050
(
2013
).
11.
D. C.
Vadillo
,
A.
Soucemarianadin
,
C.
Delattre
, and
D. C. D.
Roux
, “
Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces
,”
Phys. Fluids
21
(
12
),
122002
122002
(
2009
).
12.
I. V.
Roisman
,
L.
Opfer
,
C.
Tropea
,
M.
Raessi
,
J.
Mostaghimi
, and
S.
Chandra
, “
Drop impact onto a dry surface: Role of the dynamic contact angle
,”
Colloids Surf. A
322
(
1–3
),
183
191
(
2008
).
13.
K.
Yokoi
,
D.
Vadillo
,
J.
Hinch
, and
I.
Hutchings
, “
Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface
,”
Phys. Fluids
21
(
7
),
72102
72102
(
2009
).
14.
Q.
Pan
,
B.
Sun
,
W.
Liu
,
W.
Xue
, and
Y.
Cao
, “
Hypergyrating droplets generated on a selective laser-textured heterogeneous wettability surface
,”
Langmuir
36
(
28
),
8123
8128
(
2020
).
15.
T.
Deng
,
K. K.
Varanasi
,
M.
Hsu
,
N.
Bhate
,
C.
Keimel
,
J.
Stein
, and
M.
Blohm
, “
Nonwetting of impinging droplets on textured surfaces
,”
Appl. Phys. Lett.
94
(
13
),
133109
(
2009
).
16.
G.
Kwak
,
M.
Lee
,
K.
Senthil
, and
K.
Yong
, “
Impact dynamics of water droplets on chemically modified WOx nanowire arrays
,”
Appl. Phys. Lett.
95
(
15
),
153101
(
2009
).
17.
P. K.
Unnikrishnan
,
V.
Vaikuntanathan
, and
D.
Sivakumar
, “
Impact dynamics of high Weber number drops on chemically modified metallic surfaces
,”
Colloids Surf. A: Physicochemical Eng. Aspects
459
,
109
119
(
2014
).
18.
T. P.
Nhung Nguyen
,
P.
Brunet
,
Y.
Coffinier
, and
R.
Boukherroub
, “
Quantitative testing of robustness on superomniphobic surfaces by drop impact
,”
Langmuir
26
(
23
),
18369
18373
(
2010
).
19.
P.
Tsai
,
R.
C. A. van der Veen
,
M.
van de Raa
, and
D.
Lohse
, “
How micropatterns and air pressure affect splashing on surfaces
,”
Langmuir
26
(
20
),
16090
16095
(
2010
).
20.
R. J. K.
Nicasy
,
H. P.
Barquero
,
H. P.
Huinink
,
S. J. F.
Erich
,
O. C. G.
Adan
,
N.
Tomozeiu
,
H.
Mansouri
, and
J.
Scheerder
, “
Increasing particle concentration enhances particle penetration depth but slows down liquid imbibition in thin fibrous filters
,”
Colloids Surf. A
684
,
133146
(
2024
).
21.
E.
Lee
and
F.
Müller-Plathe
, “
Effect of polymer on the contact line friction of a capillary bridge
,”
Macromolecules
55
(
7
),
2649
2658
(
2022
).
22.
X.
Deng
,
F.
Schellenberger
,
P.
Papadopoulos
,
D.
Vollmer
, and
H.-J.
Butt
, “
Liquid drops impacting superamphiphobic coatings
,”
Langmuir
29
(
25
),
7847
7856
(
2013
).
23.
L.
Chen
,
Y.
Wang
,
X.
Peng
,
Q.
Zhu
, and
K.
Zhang
, “
Impact dynamics of aqueous polymer droplets on superhydrophobic surfaces
,”
Macromolecules
51
(
19
),
7817
7827
(
2018
).
24.
H.-J.
Butt
,
C.
Semprebon
,
P.
Papadopoulos
,
D.
Vollmer
,
M.
Brinkmann
, and
M.
Ciccotti
, “
Design principles for superamphiphobic surfaces
,”
Soft Matter
9
(
2
),
418
428
(
2013
).
25.
J.
Cai
,
T.
Jin
,
J.
Kou
,
S.
Zou
,
J.
Xiao
, and
Q.
Meng
, “
Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
(
5
),
1623
1636
(
2021
).
26.
S.
Krainer
and
U.
Hirn
, “
Contact angle measurement on porous substrates: Effect of liquid absorption and drop size
,”
Colloids Surf. A
619
,
126503
(
2021
).
27.
C.
Waldner
and
U.
Hirn
, “
Modeling liquid penetration into porous materials based on substrate and liquid surface energies
,”
J. Colloid Interface Sci.
640
,
445
455
(
2023
).
28.
G.
McHale
,
R.
Ledesma-Aguilar
, and
C.
Neto
, “
Cassie's law reformulated: Composite surfaces from superspreading to superhydrophobic
,”
Langmuir
39
(
31
),
11028
11035
(
2023
).
29.
M.
Nosonovsky
, “
On the range of applicability of the Wenzel and Cassie equations
,”
Langmuir
23
(
19
),
9919
9920
(
2007
).
30.
M.
Piskunov
,
N.
Khomutov
,
A.
Semyonova
,
A.
Di Martino
,
E.
Khan
, and
E.
Bolbasov
, “
Microgel particle collision with smooth and nanofiber hydrophobic surfaces during three-dimensional printing of a biopolymer layer
,”
Langmuir
39
(
25
),
8841
8854
(
2023
).
31.
M.
Piskunov
,
A.
Ashikhmin
,
A.
Piskunova
, and
A.
Di Martino
, “
Spreading dynamics of a microgel particle-laden thermosensitive polymer drop along smooth and nanofiber surfaces
,”
Phys. Fluids
36
(
7
),
071910
(
2024
).
32.
C.
Zhang
,
R.
Grossier
,
N.
Candoni
, and
S.
Veesler
, “
Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: A review of methods
,”
Biomater. Res.
25
(
1
),
41
(
2021
).
33.
C. W.
Visser
,
T.
Kamperman
,
L. P.
Karbaat
,
D.
Lohse
, and
M.
Karperien
, “
In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials
,”
Sci. Adv.
4
(
1
),
eaao1175
(
2018
).
34.
T.
Kamperman
,
V. D.
Trikalitis
,
M.
Karperien
,
C. W.
Visser
, and
J.
Leijten
, “
Ultrahigh-throughput production of monodisperse and multifunctional Janus microparticles using in-air microfluidics
,”
ACS Appl. Mater. Interfaces
10
(
28
),
23433
23438
(
2018
).
35.
M.
Piskunov
,
A.
Semyonova
,
A.
Ashikhmin
,
V.
Fedorov
,
N.
Khomutov
, and
S.
Misyura
, “
On the instability of water-in-oil emulsion drop lamella and rim moving over a heated surface in the film boiling regime
,”
Int. J. Heat Mass Transfer
202
,
123724
123724
(
2023
).
36.
A.
Semyonova
,
N.
Khomutov
,
S.
Misyura
, and
M.
Piskunov
, “
Dynamic and kinematic characteristics of unsteady motion of a water-in-oil emulsion droplet in collision with a solid heated wall under conditions of convective heat transfer
,”
Int. Commun. Heat Mass Transfer
137
,
106277
106277
(
2022
).
37.
A.
Ashikhmin
,
A.
Semyonova
,
V.
Fedorov
,
S.
Misyura
, and
M.
Piskunov
, “
Nucleate boiling heat transfer during water-in-oil emulsion drop impact onto a heated solid surface
,”
Int. J. Therm. Sci.
184
,
107989
107989
(
2023
).
38.
M.
Piskunov
,
A.
Semyonova
,
N.
Khomutov
,
A.
Ashikhmin
, and
V.
Yanovsky
, “
Effect of rheology and interfacial tension on spreading of emulsion drops impacting a solid surface
,”
Phys. Fluids
33
(
8
),
83309
83309
(
2021
).
39.
E.
Melnik
,
K.
Stankevich
,
A.
Zinovyev
,
E.
Poletykina
,
A.
Andreev
,
V.
Bouznik
, and
E.
Bolbasov
, “
Effect of heat treatments and aggressive media on mechanical properties of porous polytetrafluoroethylene membranes fabricated via electrospinning
,”
J. Fluorine Chem.
264
,
110062
(
2022
).
40.
S.
Goreninskii
,
N.
Danilenko
,
E.
Bolbasov
,
A.
Evtina
,
M.
Buldakov
,
N.
Cherdyntseva
,
M.
Saqib
,
N.
Beshchasna
,
J.
Opitz
,
V.
Filimonov
, and
S.
Tverdokhlebov
, “
Enhanced properties of poly(ε-caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol
,”
J. Appl. Polym. Sci.
138
(
23
),
app50535
(
2021
).
41.
V. E.
Sizov
,
M. S.
Kondratenko
,
M. O.
Gallyamov
, and
K. J.
Stevenson
, “
Advanced porous polybenzimidazole membranes for vanadium redox batteries synthesized via a supercritical phase-inversion method
,”
J. Supercrit. Fluids
137
,
111
117
(
2018
).
42.
C.
Mandrycky
,
Z.
Wang
,
K.
Kim
, and
D. H.
Kim
, “
3D bioprinting for engineering complex tissues
,”
Biotechnol. Adv.
34
(
4
),
422
434
(
2016
).
43.
V.
Ravi
,
M. A.
Jog
, and
R. M.
Manglik
, “
Effects of pseudoplasticity on spread and recoil dynamics of aqueous polymeric solution droplets on solid surfaces
,”
Interfacial Phenom. Heat Transfer
1
(
3
),
273
287
(
2013
).
44.
E. N.
Bolbasov
,
K. S.
Stankevich
,
E. A.
Sudarev
,
V. M.
Bouznik
,
V. L.
Kudryavtseva
,
L. V.
Antonova
,
V. G.
Matveeva
,
Y. G.
Anissimov
, and
S. I.
Tverdokhlebov
, “
The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride—Tetrafluoroethylene copolymer
,”
Mater. Chem. Phys.
182
,
338
346
(
2016
).
45.
I.
Kolesnik
,
T.
Tverdokhlebova
,
N.
Danilenko
,
E.
Plotnikov
,
D.
Kulbakin
,
A.
Zheravin
,
V.
Bouznik
, and
E.
Bolbasov
, “
Characterization and determination of the biocompatibility of porous polytetrafluoroethylene membranes fabricated via electrospinning
,”
J. Fluorine Chem.
246
(
October 2020
),
109798
(
2021
).
46.
M.
Piskunov
,
N.
Khomutov
,
A.
Semyonova
,
A.
Ashikhmin
, and
S.
Misyura
, “
Unsteady convective flow of a preheated water-in-oil emulsion droplet impinging on a heated wall
,”
Phys. Fluids
34
(
9
),
93311
93311
(
2022
).
47.
M.
Khavari
,
C.
Sun
,
D.
Lohse
, and
T.
Tran
, “
Fingering patterns during droplet impact on heated surfaces
,”
Soft Matter
11
(
17
),
3298
3303
(
2015
).
48.
M.
Piskunov
,
J.
Breitenbach
,
J. B.
Schmidt
,
P.
Strizhak
,
C.
Tropea
, and
I. V.
Roisman
, “
Secondary atomization of water-in-oil emulsion drops impinging on a heated surface in the film boiling regime
,”
Int. J. Heat Mass Transfer
165
,
120672
120672
(
2021
).
49.
A. B. D.
Cassie
and
S.
Baxter
, “
Wettability of porous surfaces
,”
Trans. Faraday Soc.
40
(
0
),
546
551
(
1944
).
50.
R. N.
Wenzel
, “
Resistance of solid surfaces to wetting by water
,”
Ind. Eng. Chem.
28
(
8
),
988
994
(
1936
).
51.
Y. C.
Jung
and
B.
Bhushan
, “
Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces
,”
Langmuir
25
(
16
),
9208
9218
(
2009
).
52.
D.
Bartolo
,
F.
Bouamrirene
,
É.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
(
2
),
299
305
(
2006
).
53.
P.
Papadopoulos
,
L.
Mammen
,
X.
Deng
,
D.
Vollmer
, and
H.-J.
Butt
, “
How superhydrophobicity breaks down
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
9
),
3254
3258
(
2013
).
54.
W.
Thomson
and
M. D.
Dahleh
,
Theory of Vibration with Applications
, 5th ed. (
Pearson
,
Upper Saddle River, N.J
.,
1997
).
55.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
56.
H.
Marmanis
and
S. T.
Thoroddsen
, “
Scaling of the fingering pattern of an impacting drop
,”
Phys. Fluids
8
(
6
),
1344
1346
(
1996
).
57.
C. D.
Stow
and
M. G.
Hadfield
, “
An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface
,”
Proc. R. Soc. London Ser. A
373
(
1755
),
419
441
(
1981
).
58.
F. P.
Bowden
and
J. H.
Brunton
, “
The deformation of solids by liquid impact at supersonic speeds
,”
Proc. R. Soc. London Ser. A
263
(
1315
),
433
450
(
1961
).
59.
J. P.
Dear
and
J. E.
Field
, “
High‐speed photography of surface geometry effects in liquid/solid impact
,”
J. Appl. Phys.
63
(
4
),
1015
1021
(
1988
).
60.
A.
Piskunova
,
N.
Khomutov
, and
M.
Piskunov
, “
Microgel particle deposition patterns after impinging on nanofiber-based coatings
,”
Phys. Fluids
36
(
1
),
013119
(
2024
).
61.
See https://www.engineeringtoolbox.com/sound-speed-water-d_598 for “
Water—Speed of sound vs temperature
,”
2022
.
62.
A.
Ashihmin
,
M.
Piskunov
,
I.
Roisman
, and
V.
Yanovsky
, “
Thermal stability control of the water-in-diesel microemulsion fuel produced by using a nonionic surfactant combined with aliphatic alcohols
,”
J. Dispersion Sci. Technol.
41
(
5
),
771
778
(
2020
).
63.
A.
Ashikhmin
,
M.
Piskunov
,
V.
Yanovsky
, and
W.-M.
Yan
, “
Properties and phase behavior of water-in-diesel microemulsion fuels stabilized by nonionic surfactants in combination with aliphatic alcohol
,”
Energy Fuels
34
(
2
),
2135
2142
(
2020
).
64.
M.
Fanun
,
Microemulsions: Properties and Applications
(
CRC Press
,
2008
).
65.
D. J.
McClements
, “
Nanoemulsions versus microemulsions: Terminology, differences, and similarities
,”
Soft Matter
8
(
6
),
1719
1729
(
2012
).
66.
A. K.
Gaharwar
,
I.
Singh
, and
A.
Khademhosseini
, “
Engineered biomaterials for in situ tissue regeneration
,”
Nat. Rev. Mater.
5
(
9
),
686
705
(
2020
).
67.
J. T.
Simpson
,
S. R.
Hunter
, and
T.
Aytug
, “
Superhydrophobic materials and coatings: A review
,”
Rep. Prog. Phys.
78
(
8
),
086501
086501
(
2015
).
You do not currently have access to this content.