In this work, the influence of evaporative flux over the atomization driven by surface acoustic waves (SAWs) of a Newtonian water drop is studied. The drop is placed on a heated substrate at constant temperature, higher than the saturation temperature at a given vapor pressure. In this manner, an interfacial temperature distribution arises along the drop free surface in terms evaporative mass flux and vapor recoil, which repercussion over aerosol size is studied by determining the asymptotic evolution equation governing the acoustically driven free surface. At such scenario, the connection between surface tension and temperature is also considered; thus, thermocapillary flow is incorporated into our drop model, described in terms of fundamental parameters, like the evaporation number, Marangoni number, and acoustic capillary number. Numerical solution of the evolution equation led us to obtain a simplified representation of the drop interfacial deformation mechanism, capable of predicting atomization and portraying the influence of evaporation over atomization. Subsequent analysis shows that the incorporation of evaporation at SAW atomization traduces in normal stresses counteracting the acoustic and thermocapillary effect, leading to the development of smaller drop aspect ratios with respect to the no-evaporative case. Being aware that the aerosol size is deeply related to the aspect ratio, we propose an analytical expression to estimate aerosol diameter under evaporative conditions. The results show that aspect ratio reduction leads to a decrement on aerosol size, up to two orders of magnitude, with respect to the no-evaporative case. Our study is a first approach providing insight about the importance of evaporation on aerosol regulation at SAW atomization.

1.
Q. Y.
Huang
,
Y.
Le
,
H.
Hu
,
Z. J.
Wan
,
J.
Ning
, and
J. L.
Han
, “
Experimental research on surface acoustic wave microfluidic atomization for drug delivery
,”
Sci. Rep.
12
,
7930
(
2022
).
2.
M.
Kurosawa
,
T.
Watanabe
,
A.
Futami
, and
T.
Higuchi
, “
Surface acoustic wave atomizer
,”
Sens. Actuators
50
,
69
74
(
1995
).
3.
J.
Ning
,
Y.
Lei
,
H.
Hu
, and
C.
Gai
, “
A comprehensive review of surface acoustic wave-enabled acoustic droplet ejection technology and its applications
,”
Micromachines
14
(
8
),
1543
(
2023
).
4.
A.
Qi
,
L. Y.
Yeo
, and
J. R.
Friend
, “
Interfacial destabilization and atomization driven by surface acoustic waves
,”
Phys. Fluids
20
,
074103
(
2008
).
5.
L.
Rayleigh
, “
On the capillary phenomena of jets
,”
Proc. R. Soc. London
29
,
71
97
(
1879
).
6.
D.
Kong
,
Y.
Wang
,
T.
Tsubata
,
M. K.
Kurosawa
, and
M.
Aoyagi
, “
Atomization characteristics of 9.6mhz directional surface acoustic wave for 1-micron spray system
,”
Sens. Actuators, A
365
,
114911
(
2024
).
7.
R. M.
White
and
F. W.
Voltmer
, “
Direct piezoelectric coupling to surface elastic waves
,”
Appl. Phys. Lett.
7
,
314
(
1965
).
8.
H.
Naidu
,
O.
Kahraman
, and
H.
Feng
, “
Novel applications of ultrasonic atomization in the manufacturing of fine chemicals, pharmaceuticals, and medical devices
,”
Ultrason. Sonochem.
86
,
105984
(
2022
).
9.
G.
Biskos
,
V.
Vons
,
C. U.
Yurteri
, and
A.
Schmidt-Ott
, “
Generation and sizing of particles for aerosol-based nanotechnology
,”
KONA Powder Part. J.
26
,
13
35
(
2008
).
10.
A. E.
Rajapaksa
,
J. J.
Ho
,
A.
Qi
,
R.
Bischof
,
T. H.
Nguyen
,
M.
Tate
,
D.
Piedrafita
,
M. P.
McIntosh
,
L. Y.
Yeo
,
E.
Meeusen
,
R. L.
Coppel
, and
J. R.
Friend
, “
Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization
,”
Respir. Res.
15
,
60
(
2014
).
11.
A.
Rajapaksa
,
A.
Qi
,
L. Y.
Yeo
,
R.
Coppel
, and
J. R.
Friend
, “
Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation
,”
Lab Chip
14
,
1858
1865
(
2014
).
12.
A.
Astefanai
,
M. v
Bommel
, and
G. L.
Corthals
, “
Surface acoustic wave nebulisation mass spectrometry for the fast and highly sensitive characterisation of synthetic dyes in textile samples
,”
J. Am. Soc. Mass Spectrom.
28
,
2108
2116
(
2017
).
13.
H.
Sazan
,
S.
Piperno
,
M.
Layani
,
S.
Magdassi
, and
H.
Shpaisman
, “
Direct assembly of nanoparticles into continuous microstructures by standing surface acoustic waves
,”
J. Colloid Interface Sci.
536
,
701
709
(
2019
).
14.
J. W.
Kim
,
Y.
Yamagata
,
M.
Takasaki
,
B. H.
Lee
,
H.
Ohmori
, and
T.
Higuchi
, “
A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition
,”
Sens. Actuators, B
107
,
535
545
(
2005
).
15.
K. H.
Choi
,
H. B.
Kim
,
K.
Ali
,
M.
Sajid
,
G. U.
Siddiqui
,
D. E.
Chang
,
H. C.
Kim
,
J. B.
Ko
,
H. W.
Dang
, and
Y. H.
Doh
, “
Hybrid surface acoustic wave-electrohydrodynamic atomization (SAW-EHDA) for the development of functional thin films
,”
Sci. Rep
5
,
15178
(
2015
).
16.
D. J.
Collins
,
O.
Manor
,
A.
Winkler
,
H.
Schmidt
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Atomization off thin water films generated by high-frequency substrate wave vibrations
,”
Phys. Rev. E
86
,
056312
(
2012
).
17.
J.
Muñoz
,
J.
Arcos
,
I.
Campos-Silva
,
O.
Bautista
, and
F.
Méndez
, “
Slippage effect on interfacial destabilization driven by standing surface acoustic waves under hydrophilic conditions
,”
Phys. Rev. Fluids
6
,
024002
(
2021
).
18.
J.
Muñoz
,
J.
Arcos
,
O.
Bautista
, and
F.
Méndez
, “
Influence of thermocapillary flow induced by a heated substrate on atomization driven by surface acoustic waves
,”
Phys. Fluids
35
,
012119
(
2023a
).
19.
J.
Muñoz
,
J.
Arcos
,
O.
Bautista
, and
F.
Méndez
, “
Influence of slippage on thermocapillary flow induced by a Gaussian temperature distribution on small-scale water droplets driven by surface acoustic waves
,”
Wave Motion
120
,
103167
(
2023b
).
20.
C.
Larsson
and
S.
Kumar
, “
Quantitative analysis of the vertical-averaging approximation for evaporating thin liquid films
,”
Phys. Rev. Fluids
7
,
094002
(
2022
).
21.
R. W.
Schrage
, “
A theoretical study of interphase mass transfer
,” Ph.D. thesis,
Columbia University Press
,
New York
,
1953
.
22.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
23.
C.
Sodtke
,
V. S.
Ajaev
, and
P.
Stephan
, “
Dynamics of volatile liquid droplets on heated surfaces: Theory versus experiment
,”
J. Fluid Mech.
610
,
343
362
(
2008
).
24.
V. S.
Ajaev
, “
Spreading of thin volatile liquid droplets on uniformly heated surfaces
,”
J. Fluid Mech.
528
,
279
296
(
2005
).
25.
J. P.
Burelbach
,
S. G.
Bankoff
, and
S. H.
Davis
, “
Nonlinear stability of evaporating/condensing liquid films
,”
J. Fluid Mech.
195
,
463
494
(
1988
).
26.
V.
Charitatos
,
T.
Pham
, and
S.
Kumar
, “
Droplet evaporation on inclined substrates
,”
Phys. Rev. Fluids
6
,
084001
(
2021
).
27.
M.
Roudini
,
D.
Niedermeier
,
F.
Stratmann
, and
A.
Winkler
, “
Droplet generation in standing-surface-acoustic-wave nebulization at controlled air humidity
,”
Phys. Rev. Appl.
14
,
014071
(
2020
).
28.
J. A. F.
Plateau
,
Statique Exp érimentale Et Théorique Des Liquides Soumis Aux Seules Forces Moléculaires
(
Legare Street Press
,
2023
), Vol.
1
.
29.
L.
Rayleigh
, “
On waves propagated along the plane surface of an elastic solid
,”
Proc. London Math. Soc.
s1–s17
,
4
11
(
1885
).
30.
V.
Ajaev
,
Interfacial Fluid Mechanics: A Mathematical Modeling Approach
(
Springer
,
New York
,
2012
).
31.
L. G.
Leal
,
Advanced Transport Phenomena
(
Cambridge University Press
,
2007
).
32.
H. J.
Palmer
, “
The hydrodynamic stability of rapidly evaporating liquids at reduced pressure
,”
J. Fluid Mech.
75
,
487
511
(
1976
).
33.
M. S.
Plesset
and
A.
Prosperetti
, “
Flow of vapor in a liquid enclosure
,”
J. Fluid Mech.
78
,
433
444
(
1976
).
34.
S. S.
Sadhal
and
M. S.
Plesset
, “
Effect of solid properties and contact angle in dropwise condensation and evaporation
,”
J. Heat Transfer
101
,
48
54
(
1979
).
35.
V. S.
Ajaev
and
D. A.
Willis
, “
Thermocapillary flow and rupture in films of molten metal on a substrate
,”
Phys. Fluids
15
,
3144
3150
(
2003
).
36.
W. E.
Schiesser
and
G. W.
Griffiths
,
A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab
(
Cambridge University Press
,
2009
).
37.
S. G.
Bankoff
and
S. H.
Davis
, “
Stability of thin films
,”
PhysChem. Hydrodyn.
9
,
5
7
(
1987
).
38.
R. J.
Deissler
and
A.
Oron
, “
Stable localized patterns in thin liquid films
,”
Phys. Rev. Lett.
68
,
2948
2951
(
1992
).
39.
K. L.
Maki
and
S.
Kumar
, “
Fast evaporation of spreading droplets of colloidal suspensions
,”
Langmuir
27
,
11347
11363
(
2011
).
40.
A.
Wixforth
,
C.
Strobl
,
C.
Gauer
,
A.
Toegl
,
J.
Scriba
, and
Z. v.
Guttenberg
, “
Acoustic manipulation of small droplets
,”
Anal. Bioanal. Chem.
379
,
982
991
(
2004
).
41.
L.
Rayleigh
, “
On the momentum and pressure of gaseous vibrations, and on the connexion with the virial theorem
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
10
(
57
),
364
374
(
1905
).
42.
M. K.
Tan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Interfacial jetting phenomena induced by focused surface vibrations
,”
Phys. Rev. Lett.
103
(
2
),
024501
(
2009
).
43.
W. L. M.
Nyborg
, “
Acoustic Streaming
(
Academic Press
,
1965
), Vol.
2
, Part B.
You do not currently have access to this content.