Molten microdroplet printing technology takes the uniform metal droplet as the basic forming unit, and it is a kind of rapid printing technology based on the shape characteristics of the parts to realize the manufacturing parts. This paper is investigated that during the microdroplet 3D printing (three-dimensional printing), electronics is studied based on the coupled level collective integral number method (coupled level set and volume of fluid) and the equivalent heat capacity method. The influence of the regional wettability characteristics of the heterogeneous functional wettability surface and its matching mode on the droplet spreading and coalescence behavior and the phase transition thermal process is explored. The precise regulation mechanism of heterogeneous functional wettability surfaces on the coalescence and forming of molten droplets is revealed. The results show that the wettability matching schemes of dual-functional-region surfaces and spaced multiple functional region surfaces can effectively regulate the dimensionless feature spreading lengths, dimensionless feature average heights, and dimensionless spreading edge spreading uniformities of the double-droplet and multiple droplet simultaneous impingement and coalescence morphologies, respectively. Under the condition of uniform wettability characteristics of the surface, the heat flow density and average temperature inside the molten fluid at the initial stage of the coalescence of double/multiple droplets show more regular symmetrical characteristics. The heat transfer effectiveness at the gap position is low and decreases with the increase in contact angle; when the surfaces are under heterogeneous bifunctional vs spaced multifunctional wettability conditions, the evolution of the overall heat transfer effectiveness of each type of wettability matching scheme increases with the increase in the wall contact angles of the single type of regions. In addition, when the surface wettability matching scheme includes a transition stage from neutral to superlyophobic, the liquid–gas interface is highly susceptible to overcoming the limitation of the energy barrier and thus instability gradually emerges, resulting in fluctuations of the heat transfer characteristics in its domain. The results of this study further enrich the droplet forming law and its phase transition heat transfer mechanism and provide a general strategy for the high-quality and high-effectiveness preparation of complex flexible electronic devices.

1.
B.
Kang
,
S. K.
Lee
,
J.
Jung
et al, “
Nanopatched graphene with molecular self-assembly toward graphene-organic hybrid soft electronics
,”
Adv. Mater.
30
(
25
),
1706480
(
2018
).
2.
A. D.
Valentine
,
T. A.
Busbee
,
J. W.
Boley
et al, “
Hybrid 3D printing of soft electronics
,”
Adv. Mater.
29
(
40
),
1703817
(
2017
).
3.
M. D.
Bartlett
,
E. J.
Markvicka
, and
C.
Majidi
, “
Rapid fabrication of soft, multilayered electronics for wearable biomonitoring
,”
Adv. Funct. Mater.
26
,
8496
8504
(
2016
).
4.
T.
Hu
,
S.
Xuan
,
L.
Ding
et al, “
Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer
,”
Mater. Des.
156
,
528
537
(
2018
).
5.
T.
Zhang
,
M.
Hu
,
Y.
Liu
et al, “
A laser printing based approach for printed electronics
,”
Appl. Phys. Lett.
108
,
103501
(
2016
).
6.
J.
Luo
,
R.
Pohl
,
L.
Qi
et al, “
Printing functional 3D microdevices by laser-induced forward transfer
,”
Small
13
(
9
),
1602553
(
2017
).
7.
Z.
Dong
,
L.
Wu
,
J.
Wang
et al, “
Superwettability controlled overflow
,”
Adv. Mater.
27
(
10
),
1745
1750
(
2015
).
8.
L.
Wu
,
Z.
Dong
,
M.
Kuang
et al, “
Printing patterned fine 3D structures by manipulating the three-phase contact line
,”
Adv. Funct. Mater.
25
(
15
),
2237
2242
(
2015
).
9.
Z.
Dong
,
J.
Ma
, and
L.
Jiang
, “
Manipulating and dispensing micro/nanoliter droplets by superlyophobic needle nozzles
,”
ACS Nano
7
(
11
),
10371
10379
(
2013
).
10.
J.
Zhang
,
A.
Wang
, and
S.
Seeger
, “
Nepenthes pitcher inspired anti-wettability silicone nanofilaments coatings: Preparation, unique anti-wettability and self-cleaning behaviors
,”
Adv. Funct. Mater.
24
(
8
),
1074
1080
(
2014
).
11.
H.
Yi
,
L.
Qi
,
J.
Luo
et al, “
Direct fabrication of metal tubes with high-quality inner surfaces via droplet deposition over soluble cores
,”
J. Mater. Process. Technol.
264
,
145
154
(
2019
).
12.
T.
Zhang
,
X.
Wang
,
T.
Li
et al, “
Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing
,”
J. Mater. Chem. C
2
,
286
294
(
2014
).
13.
Q.
Xu
,
J.
Wang
,
I.
Smith
et al, “
Directing the transportation of a water droplet on a patterned superlyophobic surface
,”
Appl. Phys. Lett.
93
(
23
),
3112
(
2008
).
14.
A.
Ghosh
,
R.
Ganguly
,
T.
Schutzius
et al, “
Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms
,”
Lab Chip
14
(
9
),
1538
1550
(
2014
).
15.
S.
Huang
,
J.
Song
,
Y.
Lu
et al, “
Underwater spontaneous pumpless transportation of nonpolar organic liquids on extreme wettability patterns
,”
ACS Appl. Mater. Interfaces
8
(
5
),
2942
2949
(
2016
).
16.
L.
Hong
and
T.
Pan
, “
Surface microfluidics fabricated by photo patternable superlyophobic nanocomposite
,”
Microfluid. Nanofluid.
10
(
5
),
991
997
(
2011
).
17.
Y.
Zheng
,
H.
Bai
,
Z.
Huang
et al, “
Directional water collection on wetted spider silk
,”
Nature
463
(
7281
),
640
643
(
2010
).
18.
H.
Bai
,
L.
Wang
,
J.
Ju
et al, “
Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns
,”
Adv. Mater.
26
(
29
),
5025
5030
(
2014
).
19.
A.
Ghosh
,
S.
Beaini
,
B.
Zhang
et al, “
Enhancing dropwise condensation through bioinspired wettability patterning
,”
Langmuir
30
(
43
),
13103
13115
(
2014
).
20.
J.
Yong
,
Q.
Yang
,
F.
Chen
et al, “
A simple way to achieve superlyophobicity, controllable water adhesion, anisotropic sliding, and anisotropic wettability based on femtosecond-laser-induced line-patterned surfaces
,”
J. Mater. Chem. A
2
(
15
),
5499
5507
(
2014
).
21.
J.
Yong
,
F.
Chen
,
Q.
Yang
et al, “
Femtosecond laser weaving superlyophobic patterned PDMS surfaces with tunable adhesion
,”
J. Phys. Chem. C
117
(
47
),
24907
24912
(
2013
).
22.
X.
Tang
,
P.
Zhu
,
Y.
Tian
et al, “
Mechano-regulated surface for manipulating liquid droplets
,”
Nat. Commun.
8
,
14831
(
2017
).
23.
J.
Luo
,
M.
Liu
,
H.
Cao
et al, “
Metal droplet printing of tube with high-quality inner surface via helical printing trajectory and soluble support
,”
Virtual Phys. Prototyping
17
(
3
),
582
598
(
2022
).
24.
J.
Huang
,
L.
Qi
,
J.
Luo
et al, “
A ground-based work of droplet deposition manufacturing toward microgravity: Fine pileup of horizontally ejected metal droplets on vertical substrates
,”
J. Manuf. Processes
66
,
293
301
(
2021
).
25.
Y.
Dou
,
J.
Luo
,
L.
Qi
et al, “
Drop-on-demand printing of recyclable circuits by partially embedding molten metal droplets in plastic substrates
,”
J. Mater. Process. Technol.
297
(
4
),
117268
(
2021
).
26.
Y.
Dou
,
J.
Luo
,
L.
Qi
et al, “
Generation mechanism and suppression method of landing error of two successively deposited metal droplets caused by coalescence and solidification
,”
Int. J. Heat Mass Transfer
172
,
121100
(
2021
).
27.
N.
Zheng
,
B.
Tong
,
G.
Zhang
et al, “
Heat transfer characteristics of successive oil droplet impingement under minimum quantity lubrication
,”
Phys. Fluids
33
(
3
),
033318
(
2021
).
28.
N.
Zheng
,
B.
Tong
,
G.
Zhang
et al, “
Numerical study on flow and heat transfer characteristics of two oil droplets impinging the wall simultaneously under the influence of micro-bubble
,”
Int. J. Heat Mass Transfer
190
,
122793
(
2022
).
29.
S.
Zhao
,
Z.
Liu
,
N.
Zheng
et al, “
Formation characteristics and acoustic regulation of liquid metal droplets in low-aspect-ratio channels
,”
Phys. Fluids
36
(
1
),
012017
(
2024
).
30.
N.
Zheng
,
Z.
Liu
,
Y.
Pang
et al, “
Study on flow and heat transfer characteristics of 3D molten aluminum droplet printing process
,”
Int. J. Heat Mass Transfer
204
,
123863
(
2023
).
31.
N.
Zheng
,
Z.
Liu
,
F.
Cai
et al, “
The morphology regulation mechanism of microdroplet printing based on heterogeneous wettability surfaces
,”
Int. J. Heat Mass Transfer
219
,
124830
(
2024
).
32.
Y.
Feng
,
J.
Liu
,
H.
Li
et al, “
Deposition behavior optimization of on-demand tin droplet with gravity based on piezoelectric micro-jet
,”
Int. J. Heat Mass Transfer
192
,
122902
(
2022
).
33.
H.
Yi
,
L.
Qi
,
J.
Luo
et al, “
Effect of the surface morphology of solidified droplet on remoltening between neighboring aluminum droplets
,”
Int. J. Mach. Tools Manuf.
130–131
,
1
11
(
2018
).
34.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York, NY
,
1999
).
35.
S.
Arbabi
,
P.
Deuar
,
R.
Bennacer
et al, “
Coalescence of sessile aqueous droplets laden with surfactant
,”
Phys. Fluids
36
(
2
),
023340
(
2024
).
36.
P. M.
Somwanshi
,
K.
Muralidhar
, and
S.
Khandekar
, “
Coalescence dynamics of sessile and pendant liquid drops placed on a hydrophobic surface
,”
Phys. Fluids
30
,
092103
(
2018
).
37.
P. K.
Kirar
,
K.
Alvarenga
,
P.
Kolhe
et al, “
Coalescence of drops on the free-surface of a liquid pool at elevated temperatures
,”
Phys. Fluids
32
,
052103
(
2020
).
38.
M.
Pasandideh-Fard
et al, “
Cooling effectiveness of a water drop impinging on a hot surface
,”
Int. J. Heat Fluid Flow
22
(
2
),
201
210
(
2001
).
You do not currently have access to this content.