Electrohydrodynamic (EHD) printing enables large-area, ultra-high-resolution manufacturing across a broad range of ink viscosities, but inevitably encounters difficulties when printing on electrically insulating three-dimensional substrates due to unpredictable electric field and surface residual charges. To overcome these obstacles, a novel approach called plasma-induced electrohydrodynamic (PiE) printing has been proposed. PiE printing employs plasma to directly create a controllable local charge region directly on substrate surfaces, which triggers EHD ink ejection and mitigates the effect of residual charges. However, the underlying mechanisms of the jetting behavior with respect to printing parameters, such as the charge-induced electric field, remain unexplored. Here, we conduct a numerical investigation, based on the Taylor–Melcher leaky dielectric model and the level set method, on the jetting behavior of substrate surface charge-induced EHD printing. We first introduce the dynamics behavior throughout the entire printing process. Then, we carry out a comprehensive investigation on surface charge-induced EHD printing under four crucial parameters: the amount of preset surface charge, the radius of preset surface charge, the duration of preset surface charge, and liquid electrical conductivity. By analyzing the induced electric field, induced charge density, fluid velocity, jet diameters, and deposited droplet sizes obtained from the numerical results, we elucidate the influence of these parameters on the dynamic behavior, durations of jetting process, and printing quality. These findings offer valuable insights into surface charge-induced EHD jetting, advancing the understanding and optimization methods for this useful micro-/nano-manufacturing technology.

1.
J. J.
Adams
,
E. B.
Duoss
,
T. F.
Malkowski
,
M. J.
Motala
,
B. Y.
Ahn
,
R. G.
Nuzzo
,
J. T.
Bernhard
, and
J. A.
Lewis
, “
Conformal printing of electrically small antennas on three-dimensional surfaces
,”
Adv. Mater.
23
,
1335
1340
(
2011
).
2.
G. L.
Goh
,
H. N.
Zhang
,
T. H.
Chong
, and
W. Y.
Yeong
, “
3D printing of multilayered and multimaterial electronics: A review
,”
Adv. Electron. Mater.
7
,
2100445
(
2021
).
3.
Y. G.
Park
,
H. S.
An
,
J. Y.
Kim
, and
J. U.
Park
, “
High-resolution, reconfigurable printing of liquid metals with three-dimensional structures
,”
Sci. Adv.
5
,
eaaw2844
(
2019
).
4.
S.
Jiang
,
X. J.
Liu
,
J. P.
Liu
,
D.
Ye
,
Y. Q.
Duan
,
K.
Li
,
Z. P.
Yin
, and
Y. A.
Huang
, “
Flexible metamaterial electronics
,”
Adv. Mater.
34
,
2200070
(
2022
).
5.
H. W.
Tan
,
Y. Y. C.
Choong
,
C. N.
Kuo
,
H. Y.
Low
, and
C. K.
Chua
, “
3D printed electronics: Processes, materials and future trends
,”
Prog. Mater. Sci.
127
,
100945
(
2022
).
6.
Y. G.
Park
,
I.
Yun
,
W. G.
Chung
,
W.
Park
,
D. H.
Lee
, and
J. U.
Park
, “
High-resolution 3D printing for electronics
,”
Adv. Sci.
9
,
2104623
(
2022
).
7.
D. Z.
Wang
,
L. K.
Lu
,
Z. Y.
Zhao
,
K. P.
Zhao
,
X. Y.
Zhao
,
C. C.
Pu
,
Y. K.
Li
,
P. F.
Xu
,
X. J.
Chen
,
Y. L.
Guo
,
L. J.
Suo
,
J. S.
Liang
,
Y.
Cui
, and
Y. Q.
Liu
, “
Large area polymer semiconductor sub-microwire arrays by coaxial focused electrohydrodynamic jet printing for high-performance OFETs
,”
Nat. Commun.
13
,
6214
(
2022
).
8.
I.
Liashenko
,
J.
Rosell-Llompart
, and
A.
Cabot
, “
Ultrafast 3D printing with submicrometer features using electrostatic jet deflection
,”
Nat. Commun.
11
,
753
(
2020
).
9.
K.
Kim
,
G.
Kim
,
B. R.
Lee
,
S.
Ji
,
S. Y.
Kim
,
B. W.
An
,
M. H.
Song
, and
J. U.
Park
, “
High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes
,”
Nanoscale
7
,
13410
13415
(
2015
).
10.
Y. Q.
Duan
,
R.
Yu
,
H. Y.
Zhang
,
W. L.
Yang
,
W. S.
Xie
,
Y. G.
Huang
, and
Z. P.
Yin
, “
Programmable, high-resolution printing of spatially graded perovskites for multispectral photodetectors
,”
Adv. Mater.
36
,
2313946
(
2024
).
11.
Y. C.
Xu
,
H. Y.
Wang
,
D.
Ye
,
R.
Yang
,
Y. G.
Huang
, and
X. S.
Miao
, “
Electrohydrodynamically printed flexible organic memristor for leaky integrate and fire neuron
,”
IEEE Electron Device Lett.
43
,
116
119
(
2022
).
12.
Y.
Cao
,
J.
Li
,
Z.
Dong
,
T.
Sheng
,
D.
Zhang
,
J.
Cai
, and
Y.
Jiang
, “
Flexible tactile sensor with an embedded-hair-in-elastomer structure for normal and shear stress sensing
,”
Soft Sci.
3
,
32
(
2023
).
13.
S.
Tian
,
Y.
Wang
,
H.
Deng
,
Y.
Wang
, and
X.
Zhang
, “
Flexible pressure and temperature sensors towards e-skin: Material, mechanism, structure and fabrication
,”
Soft Sci.
3
,
30
(
2023
).
14.
S.
Patel
,
F.
Ershad
,
M.
Zhao
,
R. R.
Isseroff
,
B.
Duan
,
Y.
Zhou
,
Y.
Wang
, and
C.
Yu
, “
Wearable electronics for skin wound monitoring and healing
,”
Soft Sci.
2
,
9
(
2022
).
15.
D.
Ye
,
Y. J.
Ding
,
Y. Q.
Duan
,
J. T.
Su
,
Z. P.
Yin
, and
Y. A.
Huang
, “
Large-scale direct-writing of aligned nanofibers for flexible electronics
,”
Small
14
,
e1703521
(
2018
).
16.
M.
Hong
,
S.
Sun
,
W.
Lyu
,
M.
Li
,
W.
Liu
,
X. L.
Shi
, and
Z. G.
Chen
, “
Advances in printing techniques for thermoelectric materials and devices
,”
Soft Sci.
3
,
29
(
2023
).
17.
D.
Shin
,
S.
Choi
,
J.
Kim
,
A.
Regmi
, and
J.
Chang
, “
Direct-printing of functional nanofibers on 3D surfaces using self-aligning nanojet in near-field electrospinning
,”
Adv. Mater. Technol.
5
,
2000232
(
2020
).
18.
F. M.
Wunner
,
M. L.
Wille
,
T. G.
Noonan
,
O.
Bas
,
P. D.
Dalton
,
E. M.
De-Juan-Pardo
, and
D. W.
Hutmacher
, “
Melt electrospinning writing of highly ordered large volume scaffold architectures
,”
Adv. Mater.
30
,
1706570
(
2018
).
19.
H. Z.
Ding
,
K.
Cao
,
F. C.
Zhang
,
W.
Boettcher
, and
R. C.
Chang
, “
A fundamental study of charge effects on melt electrowritten polymer fibers
,”
Mater. Des.
178
,
107857
(
2019
).
20.
K.
Cao
,
F. C.
Zhang
,
A.
Zaeri
,
R.
Zgeib
, and
R. B. C.
Chang
, “
A charge-based mechanistic study into the effect of collector temperature on melt electrohydrodynamic printing outcomes
,”
Adv. Mater. Technol.
6
,
2100251
(
2021
).
21.
H. Y.
Kim
,
M.
Lee
,
K. J.
Park
,
S.
Kim
, and
L.
Mahadevan
, “
Nanopottery: Coiling of electrospun polymer nanofibers
,”
Nano Lett.
10
,
2138
2140
(
2010
).
22.
L.
Tse
and
K.
Barton
, “
A field shaping printhead for high-resolution electrohydrodynamic jet printing onto non-conductive and uneven surfaces
,”
Appl. Phys. Lett.
104
,
143510
(
2014
).
23.
C.
Wei
,
H. T.
Qin
,
N. A.
Ramírez-Iglesias
,
C. P.
Chiu
,
Y. S.
Lee
, and
J. Y.
Dong
, “
High-resolution ac-pulse modulated electrohydrodynamic jet printing on highly insulating substrates
,”
J. Micromech. Microeng.
24
,
045010
(
2014
).
24.
H.
Liu
,
Z.
Wang
,
L.
Gao
,
Y.
Huang
,
H.
Tang
,
X.
Zhao
, and
W.
Deng
, “
Optofluidic resonance of a transparent liquid jet excited by a continuous wave laser
,”
Phys. Rev. Lett.
127
,
244502
(
2021
).
25.
Y. S.
Park
,
J.
Kim
,
J. M.
Oh
,
S.
Park
,
S.
Cho
,
H.
Ko
, and
Y. K.
Cho
, “
Near-field electrospinning for three-dimensional stacked nanoarchitectures with high aspect ratios
,”
Nano Lett.
20
,
441
448
(
2020
).
26.
Y.
Jiang
,
D.
Ye
,
A.
Li
,
B.
Zhang
,
W.
Han
,
X.
Niu
,
M.
Zeng
,
L.
Guo
,
G.
Zhang
,
Z.
Yin
, and
Y.
Huang
, “
Transient charge-driven 3D conformal printing via pulsed-plasma impingement
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2402135121
(
2024
).
27.
Y. W.
Han
,
C.
Wei
, and
J. Y.
Dong
, “
Droplet formation and settlement of phase-change ink in high resolution electrohydrodynamic (EHD) 3D printing
,”
J. Manuf. Processes
20
,
485
491
(
2015
).
28.
Y. M.
Liu
,
B. E.
Abali
, and
W. H.
Müller
, “
Multiphysics simulation of two-phase viscous fluid flow steered by electric field for jetting of microdroplets
,”
Int. J. Multiphase Flow
176
,
104843
(
2024
).
29.
M. G.
Shen
and
B. Q.
Li
, “
A 3D conservative level set model to simulate drop impact with phase change onto solid surfaces
,”
Int. J. Multiphase Flow
169
,
104615
(
2023
).
30.
Y. Y.
Liu
,
C.
Shu
,
H. W.
Zhang
,
L. M.
Yang
, and
C. B.
Lee
, “
An efficient high-order least square-based finite difference-finite volume method for solution of compressible Navier-Stokes equations on unstructured grids
,”
Comput. Fluids
222
,
104926
(
2021
).
31.
Y. Q.
Pan
and
L. C.
Zeng
, “
Simulation and validation of droplet generation process for revealing three design constraints in electrohydrodynamic jet printing
,”
Micromachines
10
,
94
(
2019
).
32.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
33.
Y.
Ouedraogo
,
E.
Gjonaj
,
T.
Weiland
,
H.
De Gersem
,
C.
Steinhausen
,
G.
Lamanna
,
B.
Weigand
,
A.
Preusche
,
A.
Dreizler
, and
M.
Schremb
, “
Electrohydrodynamic simulation of electrically controlled droplet generation
,”
Int. J. Heat Fluid Flow
64
,
120
128
(
2017
).
34.
S.
Osher
and
J. A.
Sethian
, “
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
,”
J. Comput. Phys.
79
,
12
49
(
1988
).
35.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
,
146
159
(
1994
).
36.
E.
Olsson
and
G.
Kreiss
, “
A conservative level set method for two phase flow
,”
J. Comput. Phys.
210
,
225
246
(
2005
).
37.
E.
Olsson
,
G.
Kreiss
, and
S.
Zahedi
, “
A conservative level set method for two phase flow II
,”
J. Comput. Phys.
225
,
785
807
(
2007
).
38.
S. K.
Singh
and
A.
Subramanian
, “
Phase-field simulations of electrohydrodynamic jetting for printing nano-to-microscopic constructs
,”
RSC Adv.
10
,
25022
25028
(
2020
).
39.
X. J.
Zhao
,
D. Z.
Wang
,
Y. G.
Lin
,
Y. L.
Sun
,
T. Q.
Ren
,
J. S.
Liang
, and
M.
Madou
, “
Numerical simulation of coaxial electrohydrodynamic jet and printing nanoscale structures
,”
Microsyst. Technol.
25
,
4651
4661
(
2019
).
40.
F.
Yan
,
B.
Farouk
, and
F.
Ko
, “
Numerical modeling of an electrostatically driven liquid meniscus in the cone-jet mode
,”
J. Aerosol Sci.
34
,
99
116
(
2003
).
41.
R. T.
Collins
,
J. J.
Jones
,
M. T.
Harris
, and
O. A.
Basaran
, “
Electrohydrodynamic tip streaming and emission of charged drops from liquid cones
,”
Nat. Phys.
4
,
149
154
(
2008
).
42.
A.
van der Bos
,
M. J.
van der Meulen
,
T.
Driessen
,
M.
van den Berg
,
H.
Reinten
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Velocity profile inside piezoacoustic inkjet droplets in flight: Comparison between experiment and numerical simulation
,”
Phys. Rev. Appl.
1
,
014004
(
2014
).
43.
D. S.
Bhandari
,
D.
Tripathi
, and
O. A.
Bég
, “
Electro-osmosis modulated periodic membrane pumping flow and particle motion with magnetic field effects
,”
Phys. Fluids
34
,
092014
(
2022
).
44.
D.
Ram
,
D. S.
Bhandari
,
D.
Tripathi
, and
K.
Sharma
, “
Motion of bacteria and CaOx particles via urine flow modulated by the electro-osmosis
,”
Phys. Fluids
35
,
121910
(
2023
).
45.
D.
Tripathi
,
V. K.
Narla
, and
Y.
Aboelkassem
, “
Electrokinetic membrane pumping flow model in a microchannel
,”
Phys. Fluids
32
,
082004
(
2020
).
46.
Q. C.
Nie
,
Q. L.
Ma
,
W. L.
Yang
,
X. L.
Pan
,
Z. Y.
Liu
,
H. S.
Fang
, and
Z. P.
Yin
, “
Designing working diagrams for electrohydrodynamic printing
,”
Chem. Eng. Sci.
240
,
116661
(
2021
).
47.
Y.
Guan
,
S.
Wu
,
M. D.
Wang
,
Y.
Tian
,
C. P.
Yu
,
W. X.
Lai
, and
Y. A.
Huang
, “
Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric bond numbers
,”
Phys. Fluids
34
,
012001
(
2022
).
48.
Y.
Guan
,
S.
Wu
,
M. D.
Wang
,
Y.
Tian
,
W. X.
Lai
, and
Y. A.
Huang
, “
Numerical analysis of electrohydrodynamic jet printing under constant and step change of electric voltages
,”
Phys. Fluids
34
,
062005
(
2022
).
49.
Y.
Guan
,
M. D.
Wang
,
S.
Wu
,
Y. X.
Sha
,
Y.
Tian
,
D.
Ye
, and
Y. A.
Huang
, “
The internal flow behaviors during Taylor cone formation of pulsating electrohydrodynamic jet printing
,”
Phys. Fluids
34
,
122007
(
2022
).
50.
P.
Ferraro
,
S.
Coppola
,
S.
Grilli
,
M.
Paturzo
, and
V.
Vespini
, “
Dispensing nano-pico droplets and liquid patterning by pyroelectrodynamic shooting
,”
Nat. Nanotechnol.
5
,
429
435
(
2010
).
51.
S.
Grilli
,
L.
Miccio
,
O.
Gennari
,
S.
Coppola
,
V.
Vespini
,
L.
Battista
,
P.
Orlando
, and
P.
Ferraro
, “
Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range
,”
Nat. Commun.
5
,
5314
(
2014
).
52.
W. H.
Xu
,
H. X.
Zheng
,
Y.
Liu
,
X. F.
Zhou
,
C.
Zhang
,
Y. X.
Song
,
X.
Deng
,
M.
Leung
,
Z. B.
Yang
,
R. X.
Xu
,
Z. L.
Wang
,
X. C.
Zeng
, and
Z. K.
Wang
, “
A droplet-based electricity generator with high instantaneous power density
,”
Nature
578
,
392
396
(
2020
).
53.
Y. K.
Jin
,
W. H.
Xu
,
H. H.
Zhang
,
R. R.
Li
,
J.
Sun
,
S. Y.
Yang
,
M. J.
Liu
,
H. Y.
Mao
, and
Z. A. K.
Wang
, “
Electrostatic tweezer for droplet manipulation
,”
Proc. Natl. Acad. Sci. U. S. A.
119
,
e2105459119
(
2022
).
54.
Q. Q.
Sun
,
D. H.
Wang
,
Y. N.
Li
,
J. H.
Zhang
,
S. J.
Ye
,
J. X.
Cui
,
L. Q.
Chen
,
Z. K.
Wang
,
H. J.
Bütt
,
D.
Vollmer
, and
X.
Deng
, “
Surface charge printing for programmed droplet transport
,”
Nat. Mater.
18
,
936
941
(
2019
).
55.
W. H.
Xu
,
Y. K.
Jin
,
W. B.
Li
,
Y. X.
Song
,
S. W.
Gao
,
B. P.
Zhang
,
L. L.
Wang
,
M. M.
Cui
,
X. T.
Yan
, and
Z. K.
Wang
, “
Triboelectric wetting for continuous droplet transport
,”
Sci. Adv.
8
,
eade208
(
2022
).
56.
A. Y.
Li
,
Y. L.
Zi
,
H. Y.
Guo
,
Z. L.
Wang
, and
F. M.
Fernández
, “
Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry
,”
Nat. Nanotechnol.
12
,
481
487
(
2017
).
57.
C. S.
Wu
,
H.
Tetik
,
J.
Cheng
,
W. B.
Ding
,
H. Y.
Guo
,
X. T.
Tao
,
N. J.
Zhou
,
Y. L.
Zi
,
Z. Y.
Wu
,
H. X.
Wu
,
D.
Lin
, and
Z. L.
Wang
, “
Electrohydrodynamic jet printing driven by a triboelectric nanogenerator
,”
Adv. Funct. Mater.
29
,
1901102
(
2019
).
58.
H. N.
Huo
,
F.
Liu
,
Y. X.
Luo
,
Q.
Gu
,
Y.
Liu
,
Z. Z.
Wang
,
R. Y.
Chen
,
L. H.
Ji
,
Y. J.
Lu
,
R.
Yao
, and
J.
Cheng
, “
Triboelectric nanogenerators for electro-assisted cell printing
,”
Nano Energy
67
,
104150
(
2020
).
59.
N.
Farjam
,
I. A.
Spiegel
, and
K.
Barton
, “
High-fidelity modeling and validation of electrohydrodynamic jet printing
,”
Materialia
26
,
101578
(
2022
).
60.
L. K.
Jiang
,
L.
Yu
,
P.
Premaratne
,
Z.
Zhang
, and
H. T.
Qin
, “
CFD-based numerical modeling to predict the dimensions of printed droplets in electrohydrodynamic inkjet printing
,”
J. Manuf. Process.
66
,
125
132
(
2021
).
61.
B.
Zhang
,
Y. H.
Sun
,
W. H.
Han
,
H.
Zhao
,
C. X.
Wang
,
H. B.
Mu
, and
G. J.
Zhang
, “
Pulse-width-dependent dynamic charge deposition on quartz dielectrics interacted with atmospheric pressure He plasma jet
,”
Plasma Sources Sci. Technol.
31
,
085006
(
2022
).
62.
E.
Slikboer
,
E.
Garcia-Caurel
,
O.
Guaitella
, and
A.
Sobota
, “
Charge transfer to a dielectric target by guided ionization waves using electric field measurements
,”
Plasma Sources Sci. Technol.
26
,
035002
(
2017
).
63.
A.
Lee
,
H.
Jin
,
H. W.
Dang
,
K. H.
Choi
, and
K. H.
Ahn
, “
Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing
,”
Langmuir
29
,
13630
13639
(
2013
).
64.
H. K.
Choi
,
J. U.
Park
,
O. O.
Park
,
P. M.
Ferreira
,
J. G.
Georgiadis
, and
J. A.
Rogers
, “
Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing
,”
Appl. Phys. Lett.
92
,
123109
(
2008
).
65.
M.
Yu
,
K. H.
Ahn
, and
S. J.
Lee
, “
Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet
,”
Mater. Des.
89
,
109
115
(
2016
).
You do not currently have access to this content.