The stable coalescence of upward flying droplets on the target substrate is a fundamental requirement during the application process of the acoustic droplet ejection system. However, the liquid properties significantly affect the droplet collision dynamics behavior during high-throughput liquid transfer. This study investigated the impact mechanisms of surface tension and viscosity on the collision behavior of upward flying droplets. The results show that four different outcomes occur as the droplet collision velocity increases: coalescence after minor deformation, complete rebound, coalescence accompanied by conglutination, and direct coalescence. Moreover, as the surface tension decreases to a certain extent, it will lead to partial rebound with conglutination. A theoretical model was developed to calculate the maximum spreading diameter based on the law of conservation of energy, which allowed for an examination of how liquid properties affect the dimensionless parameters associated with direct coalescence. During the calculation of the maximum diameter, it was found that the higher the surface tension or the lower the viscosity of the liquid, the less viscous dissipation energy occurs in the droplet coalescence process. The decrease in energy dissipation increases the probability of direct coalescence taking place. By combining theoretical analysis and experimental observations of the binary droplet collision behavior, we have initially established a connection between the ideal droplet collision outcomes, particularly direct coalescence, and input power (or velocity). It can provide a reliable method that can be referenced for achieving efficient coalescence across various liquid types under given experimental conditions.

1.
S. A.
Elrod
,
B.
Hadimioglu
,
B. T.
Khuriyakub
,
E. G.
Rawson
,
E.
Richley
,
C. F.
Quate
,
N. N.
Mansour
, and
T. S.
Lundgren
, “
Nozzleless droplet formation with focused acoustic beams
,”
J. Appl. Phys.
65
(
9
),
3441
3447
(
1989
).
2.
E.
Kulesskiy
,
J.
Saarela
,
L.
Turunen
, and
K.
Wennerberg
, “
Precision cancer medicine in the acoustic dispensing era: Ex vivo primary cell drug sensitivity testing
,”
J. Lab. Autom.
21
(
1
),
27
36
(
2016
).
3.
N. M.
Nebane
,
T.
Coric
,
S.
McKellip
,
L.
Woods
,
M.
Sosa
,
L.
Rasmussen
,
M. A.
Bjornsti
, and
E. L.
White
, “
Acoustic droplet ejection technology and its application in high-throughput RNA interference screening
,”
J. Lab. Autom.
21
(
1
),
198
203
(
2016
).
4.
P.
Kanigowska
,
Y.
Shen
,
Y.
Zheng
,
S.
Rosser
, and
Y.
Cai
, “
Smart DNA fabrication using sound waves: Applying acoustic dispensing technologies to synthetic biology
,”
J. Lab. Autom.
21
(
1
),
49
56
(
2016
).
5.
E. B.
Shapland
,
V.
Holmes
,
C. D.
Reeves
,
E.
Sorokin
,
M.
Durot
,
D.
Platt
,
C.
Allen
,
J.
Dean
,
Z.
Serber
,
J.
Newman
, and
S.
Chandran
, “
Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed Nextera process
,”
ACS Synth. Biol.
4
(
7
),
860
866
(
2015
).
6.
Q.
Guo
,
X.
Su
,
X.
Zhang
,
M.
Shao
,
H.
Yu
, and
D.
Li
, “
A review on acoustic droplet ejection technology and system
,”
Soft Matter
17
(
11
),
3010
3021
(
2021
).
7.
R.
Rioboo
,
C.
Tropea
, and
M.
Marengo
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
(
2
),
12
(
2001
).
8.
H. P.
Kavehpour
, “
Coalescence of drops
,”
Annu. Rev. Fluid Mech.
47
,
245
268
(
2015
).
9.
N.
Wadhwa
,
P.
Vlachos
, and
S.
Jung
, “
Noncoalescence in the oblique collision of fluid jets
,”
Phys. Rev. Lett.
110
(
12
),
124502
(
2013
).
10.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
80
(
1997
).
11.
M.
Gavaises
,
A.
Theodorakakos
,
G.
Bergeles
, and
G.
Brenn
, “
Evaluation of the effect of droplet collisions on spray mixing
,”
Proc. Inst. Mech. Eng., Part C
210
(
5
),
465
475
(
1996
).
12.
R.-H.
Chen
and
C.-T.
Chen
, “
Collision between immiscible drops with large surface tension difference: Diesel oil and water
,”
Exp. Fluids
41
(
3
),
453
461
(
2006
).
13.
C.
Gotaas
,
P.
Havelka
,
H. A.
Jakobsen
,
H. F.
Svendsen
,
M.
Hase
,
N.
Roth
, and
B.
Weigand
, “
Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison
,”
Phys. Fluids
19
(
10
),
102106
(
2007
).
14.
G.
Finotello
,
S.
De
,
J. C.
Vrouwenvelder
,
J. T.
Padding
,
K. A.
Buist
,
A.
Jongsma
,
F.
Innings
, and
J.
Kuipers
, “
Experimental investigation of non-Newtonian droplet collisions: The role of extensional viscosity
,”
Exp. Fluids
59
(
7
),
1
16
(
2018
).
15.
M.
Kuschel
and
M.
Sommerfeld
, “
Investigation of droplet collisions for solutions with different solids content
,”
Exp. Fluids
54
(
2
),
1440
(
2013
).
16.
K.
Willis
and
M.
Orme
, “
Binary droplet collisions in a vacuum environment: An experimental investigation of the role of viscosity
,”
Exp. Fluids
34
(
1
),
28
41
(
2003
).
17.
F.-C.
Wang
,
J.-T.
Feng
, and
Y.-P.
Zhao
, “
The head-on colliding process of binary liquid droplets at low velocity: High-speed photography experiments and modeling
,”
J. Colloid Interface Sci.
326
(
1
),
196
200
(
2008
).
18.
O.
Ramírez-Soto
,
V.
Sanjay
,
D.
Lohse
,
J. T.
Pham
, and
D.
Vollmer
, “
Lifting a sessile oil drop from a superamphiphobic surface with an impacting one
,”
Sci. Adv.
6
(
34
),
eaba4330
(
2020
).
19.
Y.
Jiang
,
A.
Umemura
, and
C.
Law
, “
An experimental investigation on the collision behaviour of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
190
(
1992
).
20.
N.
Shlegel
,
P.
Tkachenko
, and
P.
Strizhak
, “
Influence of viscosity, surface and interfacial tensions on the liquid droplet collisions
,”
Chem. Eng. Sci.
220
,
115639
(
2020
).
21.
K.-L.
Pan
,
P.-C.
Chou
, and
Y.-J.
Tseng
, “
Binary droplet collision at high Weber number
,”
Phys. Rev. E
80
(
3
),
036301
(
2009
).
22.
H. N.
Oguz
and
A.
Prosperetti
, “
Surface-tension effects in the contact of liquid surfaces
,”
J. Fluid Mech.
203
,
149
171
(
1989
).
23.
P. J.
Graham
,
M. M.
Farhangi
, and
A.
Dolatabadi
, “
Dynamics of droplet coalescence in response to increasing hydrophobicity
,”
Phys. Fluids
24
(
11
),
112105
(
2012
).
24.
M.
Abouelsoud
and
B.
Bai
, “
Bouncing and coalescence dynamics during the impact of a falling drop with a sessile drop on different solid surfaces
,”
Phys. Fluids
33
(
6
),
063309
(
2021
).
25.
Q.
Guo
,
M.
Shao
,
X.
Su
,
X.
Zhang
,
H.
Yu
, and
D.
Li
, “
Controllable droplet ejection of multiple reagents through focused acoustic beams
,”
Langmuir
37
(
51
),
14805
14812
(
2021
).
26.
R.
Akbari
and
C.
Antonini
, “
Contact angle measurements: From existing methods to an open-source tool
,”
Adv. Colloid Interface Sci.
294
,
102470
(
2021
).
27.
N.
Nikolopoulos
,
K.-S.
Nikas
, and
G.
Bergeles
, “
A numerical investigation of central binary collision of droplets
,”
Comput. Fluids
38
(
6
),
1191
1202
(
2009
).
28.
N.
Yi
,
B.
Huang
,
L.
Dong
,
X.
Quan
,
F.
Hong
,
P.
Tao
,
C.
Song
,
W.
Shang
, and
T.
Deng
, “
Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface
,”
Sci. Rep.
4
(
1
),
4303
(
2014
).
29.
D. C.
Deisenroth
,
J. S.
Allen
, and
S. H.
Lee
, “
Viscous effects in collision outcomes of a falling drop impinging on a sessile drop
,” in
18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2019
), pp.
946
955
.
30.
S.
Chandra
and
C.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London Ser. A
432
(
1884
),
13
41
(
1991
).
31.
S.
Chandra
and
C.
Avedisian
, “
The collision of a droplet with a solid surface
,”
Phys. Fluids A
2
(
9
),
1525
1525
(
1990
).
32.
M.
Pasandideh‐Fard
,
Y. M.
Qiao
,
S.
Chandra
, and
J.
Mostaghimi
, “
Capillary effects during droplet impact on a solid surface
,”
Phys. Fluids
8
(
3
),
650
659
(
1996
).
33.
Z.
Gong
,
L.
Huang
,
X.
Tang
,
K.
Chen
,
Z.
Wu
,
L.
Zhang
,
Y.
Sun
,
Y.
Xia
,
H.
Chen
, and
Y.
Wei
, “
Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week
,”
Adv. Healthcare Mater.
10
(
22
),
2101312
(
2021
).
34.
E.
Teplitsky
,
K.
Joshi
,
D. L.
Ericson
,
A.
Scalia
,
J. D.
Mullen
,
R. M.
Sweet
, and
A. S.
Soares
, “
High throughput screening using acoustic droplet ejection to combine protein crystals and chemical libraries on crystallization plates at high density
,”
J. Struct. Biol.
191
(
1
),
49
58
(
2015
).
You do not currently have access to this content.