We present a combination of laboratory experiments and computational fluid dynamics (CFD) simulations to understand the wind-induced drag force and drag coefficient for Saccharum contortum seeds. Seed drop experiments indicate that the settling fall velocities of hair-equipped seeds are within 1–2 m/s, compared to 2.34 times higher settling fall velocity of the seed without hairs. The experimental data illustrate a power-law relationship between drag coefficient (Cd) and Reynolds number (Re) under the free fall condition: CdRe1.1. CFD simulations show that both viscous and pressure drag force components are important in contributing to wind drag. The presence of hairs substantially increases pressure drag, and its relative importance depends on hair number and orientation. Seed morphology including hair number and orientation influences the drag coefficient under different flow directions relatively to the seed body. The lower drag coefficient observed with crossflow wind compared to free fall suggests that seeds encounter less air resistance while drifting horizontally in the wind, favoring extended flying time and distance. Based on the varying drag coefficients under different conditions, we propose the incorporation of varying drag coefficients in future wind-driven seed dispersal models.

1.
Barta
,
E.
and
Weihs
,
D.
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
2.
Beckman
,
N. G.
and
Sullivan
,
L. L.
, “
The causes and consequences of seed dispersal
,”
Annu. Rev. Ecol., Evol. Syst.
54
,
403
427
(
2023
).
3.
Clark
,
J. S.
,
Fastie
,
C.
,
Hurtt
,
G.
,
Jackson
,
S. T.
,
Johnson
,
C.
,
King
,
G. A.
,
Lewis
,
M.
,
Lynch
,
J.
,
Pacala
,
S.
,
Prentice
,
C.
,
Schupp
,
E. W.
,
Webb
III,
T.
, and
Wyckoff
,
P.
, “
Reid's paradox of rapid: Dispersal theory and interpretation of paleoecological records
,”
BioScience
48
,
13
24
(
1998
).
4.
Corlett
,
R. T.
and
Westcott
,
D. A.
, “
Will plant movements keep up with climate change?
,”
Trends Ecol. Evol.
28
,
482
488
(
2013
).
5.
Cummins
,
C.
,
Seale
,
M.
,
Macente
,
A.
,
Certini
,
D.
,
Mastropaolo
,
E.
,
Viola
,
I. M.
, and
Nakayama
,
N.
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
,
414
418
(
2018
).
6.
Damschen
,
E. I.
,
Brudvig
,
L. A.
,
Haddad
,
N. M.
,
Levey
,
D. J.
,
Orrock
,
J. L.
, and
Tewksbury
,
J. J.
, “
The movement ecology and dynamics of plant communities in fragmented landscapes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
19078
19083
(
2008
).
7.
Dong
,
Y. Y.
,
Hu
,
K. X.
,
Wang
,
Y. B.
, and
Zhang
,
Z. J.
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
(
8
),
085320
(
2021
).
8.
Fauli
,
R. A.
,
Rabault
,
J.
, and
Carlson
,
A.
, “
Effect of wing fold angles on the terminal descent velocity of double-winged autorotating seeds, fruits, and other diaspores
,”
Phys. Rev. E
100
(
1
),
013108
(
2019
).
9.
Fischlin
,
A.
,
Midgley
,
G. F.
,
Price
,
J. T.
,
Leemans
,
R.
,
Gopal
,
B.
,
Turley
,
C.
,
Rounsevell
,
M. D. A.
,
Dube
,
O. P.
,
Tarazona
,
J.
, and
Velichko
,
A. A.
, “
Ecosystems, their properties, goods, and services
,” in
Climate Change 2007: Impacts, Adaptation and Vulnerability
(
Cambridge University Press
,
2007
).
10.
Gibson
,
D. J.
,
Grasses and Grassland Ecology
(
Oxford University Press
,
2009
).
11.
Heydel
,
F.
,
Cunze
,
S.
,
Bernhardt-Römermann
,
M.
, and
Tackenberg
,
O.
, “
Long-distance seed dispersal by wind: Disentangling the effects of species traits, vegetation types, vertical turbulence and wind speed
,”
Ecol. Res.
29
,
641
651
(
2014
).
12.
Kaggwa
,
R. J.
,
Jiang
,
H.
,
Ryan
,
R. A.
,
Zahller
,
J. P.
,
Kellogg
,
E. A.
,
Woodford-Thomas
,
T.
, and
Callis-Duehl
,
K.
, “
Exploring grass morphology & mutant phenotypes using Setaria viridis
,”
Am. Biol. Teach.
83
,
311
319
(
2021
).
13.
Ledda
,
P. G.
,
Siconolfi
,
L.
,
Viola
,
F.
,
Camarri
,
S.
, and
Gallaire
,
F.
, “
Flow dynamics of a dandelion pappus: A linear stability approach
,”
Phys. Rev. Fluids
4
(
7
),
071901(R)
(
2019
).
14.
Lee
,
M.
,
Lee
,
S. H.
, and
Kim
,
D.
, “
Stabilized motion of a freely falling bristled disk
,”
Phys. Fluids
32
,
113604
(
2020
).
15.
Lentink
,
D.
,
Dickson
,
W. B.
,
van Leeuwen
,
J. L.
, and
Dickinson
,
M. H.
, “
Leading-edge vortices elevate lift of autorotating plant seeds
,”
Science
324
,
1438
1440
(
2009
).
16.
Li
,
S. Q.
,
Pan
,
D. Y.
,
Li
,
J.
, and
Shao
,
X. M.
, “
Drag and wake structure of a quasi-dandelion pappus model at low and moderate Reynolds numbers: The effects of filament width
,”
Phys. Fluids
33
(
12
),
121904
(
2021
).
17.
Lorts
,
C. M.
,
Briggeman
,
T.
, and
Sang
,
T.
, “
Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot
,”
J. Syst. Evol.
46
(
3
),
396
404
(
2008
).
18.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
, “
Ten years of industrial experience with the SST turbulence model
,” in
Turbulence, Heat and Mass Transfer
(
TIB
,
2003
), pp.
625
632
.
19.
Nathan
,
R.
,
Katul
,
G. G.
,
Horn
,
H. S.
,
Thomas
,
S. M.
,
Oren
,
R.
,
Avissar
,
R.
,
Pacala
,
S. W.
, and
Levin
,
S. A.
, “
Mechanisms of long-distance dispersal of seeds by wind
,”
Nature
418
,
409
413
(
2002
).
20.
Petersen
,
K. B.
and
Kellogg
,
E. A.
, “
Diverse ecological functions and the convergent evolution of grass awns
,”
Am. J. Botany
109
,
1331
1345
(
2022
).
21.
Qin
,
L.
,
Jian
,
Z.
,
Xu
,
Y. Y.
, and
Ma
,
L. F.
, “
On the attitude stability of flying dandelion seeds
,”
Phys. Fluids
35
(
8
),
081904
(
2023
).
22.
Qiu
,
F. S.
,
He
,
T. B.
, and
Bao
,
W. Y.
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
(
11
),
113104
(
2020
).
23.
Qiu
,
F. S.
,
Qian
,
H. Y.
,
Du
,
Y. M.
, and
Li
,
C. J.
, “
The pappus angle as a key factor in the entire separation of a vortex ring from a dandelion seed's pappus
,”
Phys. Fluids
34
(
8
),
083101
(
2022
).
24.
Qiu
,
F. S.
,
Wang
,
B. W.
,
Du
,
Y. M.
, and
Qian
,
H. Y.
, “
Numerical investigation on the flow characteristics of model dandelion seeds with angles of attitude
,”
Phys. Fluids
33
(
11
),
113107
(
2021
).
25.
Rabault
,
J.
,
Fauli
,
R. A.
, and
Carlson
,
A.
, “
Curving to fly: Synthetic adaptation unveils optimal flight performance of whirling fruits
,”
Phys. Rev. Lett.
122
(
2
),
024501
(
2019
).
26.
Roos
,
F. W.
and
Willmarth
,
W. W.
, “
Some experimental results on sphere and disk drag
,”
AIAA J.
9
(
2
),
285
291
(
1971
).
27.
Seale
,
M.
and
Nakayama
,
N.
, “
From passive to informed: Mechanical mechanisms of seed dispersal
,”
New Phytol.
225
(
2
),
653
658
(
2020
).
28.
Seale
,
M.
,
Zhdanov
,
O.
,
Soons
,
M. B.
,
Cummins
,
C.
,
Kroll
,
E.
,
Blatt
,
M. R.
,
Zare-Behtash
,
H.
,
Busse
,
A.
,
Mastropaolo
,
E.
,
Bullock
,
J. M.
,
Viola
,
I. M.
, and
Nakayama
,
N.
, “
Environmental morphing enables informed dispersal of the dandelion diaspore
,”
eLife
11
,
e81962
(
2022
).
29.
Soons
,
M. B.
and
Bullock
,
J. M.
, “
Non-random seed abscission, long-distance wind dispersal and plant migration rates
,”
J. Ecol.
96
,
581
590
(
2008
).
30.
Soons
,
M. B.
,
Heil
,
G. W.
,
Nathan
,
R.
, and
Katul
,
G. G.
, “
Determinants of long-distance seed dispersal by wind in grasslands
,”
Ecology
85
,
3056
3068
(
2004
).
31.
Sun
,
B. H.
and
Guo
,
X. L.
, “
Drag scaling law and parachute terminal velocity of the dandelion
,”
AIP Adv.
13
(
8
),
085305
(
2023
).
32.
Thompson
,
S.
and
Katul
,
G.
, “
Plant propagation fronts and wind dispersal: An analytical model to upscale from seconds to decades using superstatistics
,”
Am. Nat.
171
,
468
479
(
2008
).
33.
Varshney
,
K.
,
Chang
,
S.
, and
Wang
,
Z. J.
, “
The kinematics of falling maple seeds and the initial transition to a helical motion
,”
Nonlinearity
25
,
C1
(
2012
).
34.
Vittoz
,
P.
and
Engler
,
R.
, “
Seed dispersal distances: A typology based on dispersal modes and plant traits
,”
Bot. Helv.
117
,
109
124
(
2007
).
35.
Wang
,
B.
,
Jun
,
I.
,
Socolofsky
,
S. A.
,
DiMarco
,
S. F.
, and
Kessler
,
J. D.
, “
Dynamics of gas bubbles from a submarine hydrocarbon seep within the hydrate stability zone
,”
Geophys. Res. Lett.
47
(
18
),
e2020GL089256
, https://doi.org/10.1029/2020GL089256 (
2020
).
36.
Wang
,
B.
and
Socolofsky
,
S. A.
, “
A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics
,”
Deep Sea Res., Part I
104
,
134
148
(
2015
).
37.
Wang
,
B.
,
Socolofsky
,
S. A.
,
Breier
,
J. A.
, and
Seewald
,
J. S.
, “
Observation of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging
,”
J. Geophys. Res.
121
,
2203
2230
, https://doi.org/10.1002/2015JC011452 (
2016
).
38.
Wang
,
B.
,
Sullivan
,
L. L.
, and
Wood
,
J. D.
, “
Modeling wind-driven seed dispersal using a coupled Lagrangian particle tracking and 1-D k-ɛ turbulence model
,”
Ecol. Modell.
486
,
110503
(
2023
).
39.
Webster
,
R. D.
and
Shaw
,
R. B.
, “
Taxonomy of the native North American species of Saccharum (Poaceae: Andropogoneae)
,”
SIDA, Contrib. Bot.
16
(
3
),
551
580
(
1995
), see https://www.jstor.org/stable/41967160
You do not currently have access to this content.