Accurate determination of high strain rate (>103 1/s) constitutive properties of soft materials remains a formidable challenge. Albeit recent advancements among experimental techniques, in particular inertial microcavitation rheometry (IMR), the intrinsic requirement to visualize the bubble cavitation dynamics has limited its application to nominally transparent materials. Here, in an effort to address this challenge and to expand the experimental capability of IMR to optically opaque materials, we investigated whether one could use the acoustic signature of the time interval between the bubble's maximum radius and first collapse time point, characterized as the bubble collapse time, to infer the viscoelastic material properties without being able to image the bubble directly in the tissue. By introducing a modified Rayleigh collapse time for soft materials, which is strongly dependent on the stiffness of the material at hand, we show that, in principle, one can obtain an order of magnitude or better estimate of the viscoelastic material properties of the soft material under investigation. Using a newly developed energy-based theoretical framework, we show that for materials stiffer than 10 kPa the bubble collapse time during a single bubble cavitation event can provide quantitative and meaningful information about the constitutive properties of the material at hand. For very soft materials (i.e., shear modulus less than 10 kPa), our theory shows that unless the collapse time measurement has very high precision and low uncertainties, the material property estimates based on the bubble collapse time only will not be accurate and require visual resolution of the full cavitation kinematics.

1.
C. E.
Brennen
, “
Cavitation in medicine
,”
Interface Focus
5
,
20150022
(
2015
).
2.
C. W.
Barney
,
C. E.
Dougan
,
K. R.
McLeod
,
A.
Kazemi-Moridani
,
Y.
Zheng
,
Z.
Ye
,
S.
Tiwari
,
I.
Sacligil
,
R. A.
Riggleman
, and
S.
Cai
, “
Cavitation in soft matter
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
9157
9165
(
2020
).
3.
S.
Tiwari
,
A.
Kazemi-Moridani
,
Y.
Zheng
,
C. W.
Barney
,
K. R.
McLeod
,
C. E.
Dougan
,
A. J.
Crosby
,
G. N.
Tew
,
S. R.
Peyton
,
S.
Cai
, and
J.-H.
Lee
, “
Seeded laser-induced cavitation for studying high-strain-rate irreversible deformation of soft materials
,”
Soft Matter
16
,
9006
9013
(
2020
).
4.
E.
Vlaisavljevich
,
Y.
Kim
,
S.
Allen
,
G.
Owens
,
S.
Pelletier
,
C.
Cain
,
K.
Ives
, and
Z.
Xu
, “
Image-guided non-invasive ultrasound liver ablation using histotripsy: Feasibility study in an in vivo porcine model
,”
Ultrasound Med. Biol.
39
,
1398
1409
(
2013
).
5.
K. B.
Bader
,
E.
Vlaisavljevich
, and
A. D.
Maxwell
, “
For whom the bubble grows: Physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy
,”
Ultrasound Med. Biol.
45
,
1056
1080
(
2019
).
6.
L.
Mancia
,
M.
Rodriguez
,
J.
Sukovich
,
Z.
Xu
, and
E.
Johnsen
, “
Single–bubble dynamics in histotripsy and high–amplitude ultrasound: Modeling and validation
,”
Phys. Med. Biol.
65
,
225014
(
2020
).
7.
L.
Mancia
,
J.
Yang
,
J.-S.
Spratt
,
J. R.
Sukovich
,
Z.
Xu
,
T.
Colonius
,
C.
Franck
, and
E.
Johnsen
, “
Acoustic cavitation rheometry
,”
Soft Matter
17
,
2931
2941
(
2021
).
8.
R. W.
Carlsen
,
A. L.
Fawzi
,
Y.
Wan
,
H.
Kesari
, and
C.
Franck
, “
A quantitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis
,”
Brain Multiphys.
2
,
100024
(
2021
).
9.
R.
Terpsma
,
R. W.
Carlsen
,
R.
Szalkowski
,
S.
Malave
,
A. L.
Fawzi
,
C.
Franck
, and
C.
Hovey
, “
Head impact modeling to support a rotational combat helmet drop test
,”
Mil. Med.
188
,
e745
e752
(
2023
).
10.
J. B.
Estrada
,
C.
Barajas
,
D. L.
Henann
,
E.
Johnsen
, and
C.
Franck
, “
High strain-rate soft material characterization via inertial cavitation
,”
J. Mech. Phys. Solids
112
,
291
317
(
2018
).
11.
J.
Yang
and
C.
Franck
, “
Strain stiffening effects of soft viscoelastic materials in inertial microcavitation
,” in
Dynamic Behavior of Materials
, edited by
L. E.
Lamberson
(
Springer International Publishing
,
Cham
,
2020
), Vol. 1, pp.
175
179
.
12.
J.
Yang
,
H. C.
Cramer
, and
C.
Franck
, “
Extracting non-linear viscoelastic material properties from violently-collapsing cavitation bubbles
,”
Extreme Mech. Lett.
39
,
100839
(
2020
).
13.
J.
Yang
,
H. C.
Cramer
, and
C.
Franck
, “
Dynamic Rugae strain localizations and instabilities in soft viscoelastic materials during inertial microcavitation
,” in
Dynamic Behavior of Materials
, edited by
L.
Lamberson
,
S.
Mates
, and
V.
Eliasson
(
Springer International Publishing
,
Cham
,
2021
), Vol. 1, pp.
45
49
.
14.
J.
Yang
,
H. C.
Cramer
,
E. C.
Bremer
,
S.
Buyukozturk
,
Y.
Yin
, and
C.
Franck
, “
Mechanical characterization of agarose hydrogels and their inherent dynamic instabilities at ballistic to ultra-high strain-rates via inertial microcavitation
,”
Extreme Mech. Lett.
51
,
101572
(
2022
).
15.
S.
Buyukozturk
,
J.-S.
Spratt
,
D. L.
Henann
,
T.
Colonius
, and
C.
Franck
, “
Particle-assisted laser-induced inertial cavitation for high strain-rate soft material characterization
,”
Exp. Mech.
62
,
1037
1050
(
2022
).
16.
A.
McGhee
,
J.
Yang
,
E. C.
Bremer
,
Z.
Xu
,
H. C.
Cramer
,
J. B.
Estrada
,
D. L.
Henann
, and
C.
Franck
, “
High-speed, full-field deformation measurements near inertial microcavitation bubbles inside viscoelastic hydrogels
,”
Exp. Mech.
63
,
63
78
(
2023
).
17.
E.-A.
Brujan
, “
Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions
,”
Ultrason. Sonochem.
58
,
104694
(
2019
).
18.
S. R.
Gonzalez-Avila
,
F.
Denner
, and
C.-D.
Ohl
, “
The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall
,”
Phys. Fluids
33
,
032118
(
2021
).
19.
F.
Denner
and
S.
Schenke
, “
Modeling acoustic emissions and shock formation of cavitation bubbles
,”
Phys. Fluids
35
,
012114
(
2023
).
20.
F.
Denner
and
S.
Schenke
, “
APECSS: A software library for cavitation bubble dynamics and acoustic emissions
,”
J. Open Source Software
8
,
5435
(
2023
).
21.
V.-T.
Nguyen
,
T.-H.
Phan
, and
W.-G.
Park
, “
Modeling of shock wave produced by collapse of cavitation bubble using a fully conservative multiphase model
,”
Phys. Fluids
35
,
116102
(
2023
).
22.
S. C.
Haskell
,
N.
Lu
,
G. E.
Stocker
,
Z.
Xu
, and
J. R.
Sukovich
, “
Monitoring cavitation dynamics evolution in tissue mimicking hydrogels for repeated exposures via acoustic cavitation emissions
,”
J. Acoust. Soc. Am.
153
,
237
247
(
2023
).
23.
L.
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
34
,
94
98
(
1917
).
24.
W.
Lauterborn
, “
High-speed photography of laser-induced breakdown in liquids
,”
Appl. Phys. Lett.
21
,
27
29
(
1972
).
25.
A. A.
Doinikov
, “
Translational motion of a spherical bubble in an acoustic standing wave of high intensity
,”
Phys. Fluids
14
,
1420
1425
(
2002
).
26.
K.
Johansen
and
M.
Postema
, “
Lagrangian formalism for computing oscillations of spherically symmetric encapsulated acoustic antibubbles
,”
Hydroacoustics
19
,
197
207
(
2016
).
27.
A. L. D.
Barros
,
Á. L.
Nogueira
,
R. C.
Paschoal
,
D.
Portes
, and
H.
Rodrigues
, “
Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh–Plesset equation
,”
Eur. J. Phys.
39
,
025807
(
2018
).
28.
C.
Barajas
and
E.
Johnsen
, “
The effects of heat and mass diffusion on freely oscillating bubbles in a viscoelastic, tissue-like medium
,”
J. Acoust. Soc. Am.
141
,
908
918
(
2017
).
29.
A.
Tzoumaka
,
J.
Yang
,
S.
Buyukozturk
,
C.
Franck
, and
D. L.
Henann
, “
Modeling high strain-rate microcavitation in soft materials: The role of material behavior in bubble dynamics
,”
Soft Matter
19
,
3895
3909
(
2023
).
30.
M.
Kim
, “
Energy transport during growth and collapse of a cavitation bubble
,” Ph.D. thesis (
University of Michigan
,
Ann-Arbor
,
2022
).
31.
E. C.
Bremer-Sai
,
J.
Yang
,
A.
McGhee
, and
C.
Franck
, “
Ballistic and blast-relevant, high-rate material properties of physically and chemically crosslinked hydrogels
” (submitted).
32.
Z.
Hu
,
L.
Xu
,
C.-Y.
Chien
,
Y.
Yang
,
Y.
Gong
,
D.
Ye
,
C. P.
Pacia
, and
H.
Chen
, “
3-D transcranial microbubble cavitation localization by four sensors
,”
IEEE Trans. Ultrason, Ferroelectr., Freq. Control
68
,
3336
3346
(
2021
).
33.
G. T.
Bokman
,
L.
Biasiori-Poulanges
,
B.
Lukić
,
C.
Bourquard
,
D. W.
Meyer
,
A.
Rack
, and
O.
Supponen
, “
High-speed X-ray phase-contrast imaging of single cavitation bubbles near a solid boundary
,”
Phys. Fluids
35
,
013322
(
2023
).
34.
G.
Latour
,
G.
Georges
,
L. S.
Lamoine
,
C.
Deumié
,
J.
Conrath
, and
L.
Hoffart
, “
Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography
,”
J. Biomed. Opt.
15
,
056006
(
2010
).
35.
N.
Katta
,
A. B.
McElroy
,
A. D.
Estrada
, and
T. E.
Milner
, “
Optical coherence tomography image-guided smart laser knife for surgery
,”
Lasers Surg. Med.
50
,
202
212
(
2018
).
36.
B.
Verhaagen
and
D. F.
Rivas
, “
Measuring cavitation and its cleaning effect
,”
Ultrason. Sonochem.
29
,
619
628
(
2016
).
37.
A.
Zhang
,
S.-M.
Li
,
P.
Cui
,
S.
Li
, and
Y.-L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
38.
Z.
Zhu
,
B. A.
Abeid
, and
J. B.
Estrada
, “
Reduced-order approach for soft material inertial cavitation rheometry
,” (
2023
).

Supplementary Material

You do not currently have access to this content.