The Ornstein–Zernike (OZ) equation is the fundamental equation for pair correlation function computations in the modern integral equation theory for liquids. In this work, machine learning models, notably physics-informed neural networks and physics-informed neural operator networks, are explored to solve the OZ equation. The physics-informed machine learning models demonstrate great accuracy and high efficiency in solving the forward and inverse OZ problems of various bulk fluids. The results highlight the significant potential of physics-informed machine learning for applications in thermodynamic state theory.

1.
M.
Kardar
,
Statistical Physics of Particles
(
Cambridge University Press
,
2007
).
2.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
, Oxford Graduate Texts (
Oxford University Press
,
Oxford
,
2010
).
3.
F.
Hirata
,
Molecular Theory of Solvation
(
Springer Science & Business Media
,
2003
), Vol.
24
.
4.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids: With Applications to Soft Matter
(
Academic Press
,
2013
).
5.
S.
Cao
,
K. A.
Konovalov
,
I. C.
Unarta
, and
X.
Huang
, “
Recent developments in integral equation theory for solvation to treat density inhomogeneity at solute–solvent interface
,”
Adv. Theory Simul.
2
,
1900049
(
2019
).
6.
J. A.
Barker
and
D.
Henderson
, “
What is ‘liquid’? Understanding the states of matter
,”
Rev. Mod. Phys.
48
,
587
671
(
1976
).
7.
D.
Henderson
and
M.
Plischke
, “
Pair and singlet correlation functions of inhomogeneous fluids calculated using the Ornstein-Zernike equation
,”
J. Phys. Chem.
92
,
7177
7185
(
1988
).
8.
J.
Ram
and
Y.
Singh
, “
Density-functional theory of the nematic phase: Results for a system of hard ellipsoids of revolution
,”
Phys. Rev. A
44
,
3718
3731
(
1991
).
9.
T.
Boublík
, “
Ornstein–Zernike equation for convex molecule fluids
,”
J. Chem. Phys.
115
,
925
929
(
2001
).
10.
L. S.
Ornstein
and
F.
Zernike
, “
Accidental deviations of density and opalescence at the critical point of a single substance
,”
Proc. Akad. Sci.
17
,
793
806
(
1914
).
11.
N.
Choudhury
and
S. K.
Ghosh
, “
Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach
,”
J. Chem. Phys.
116
,
8517
8522
(
2002
).
12.
T.
Tsednee
and
T.
Luchko
, “
Closure for the Ornstein-Zernike equation with pressure and free energy consistency
,”
Phys. Rev. E
99
,
032130
(
2019
).
13.
F.
Carvalho
and
J.
Braga
, “
Thermodynamic consistency by a modified Perkus–Yevick theory using the Mittag-Leffler function
,”
Phys. A
576
,
126065
(
2021
).
14.
E.
Bedolla
,
L. C.
Padierna
, and
R.
Castañeda-Priego
, “
Evolutionary optimization of the Verlet closure relation for the hard-sphere and square-well fluids
,”
Phys. Fluids
34
,
077112
(
2022
).
15.
E. L.
Ratkova
,
D. S.
Palmer
, and
M. V.
Fedorov
, “
Solvation thermodynamics of organic molecules by the molecular integral equation theory: Approaching chemical accuracy
,”
Chem. Rev.
115
,
6312
6356
(
2015
).
16.
P.
Ogrin
,
T.
Urbic
, and
C. J.
Fennell
, “
Statistical-mechanical liquid theories reproduce anomalous thermodynamic properties of explicit two-dimensional water models
,”
Phys. Rev. E
106
,
034115
(
2022
).
17.
S.
Cao
,
Y.
Qiu
,
I. C.
Unarta
,
E. C.
Goonetilleke
, and
X.
Huang
, “
The ion-dipole correction of the 3DRISM solvation model to accurately compute water distributions around negatively charged biomolecules
,”
J. Phys. Chem. B
126
,
8632
8645
(
2022
).
18.
T.
Eckert
,
N. C. X.
Stuhlmüller
,
F.
Sammüller
, and
M.
Schmidt
, “
Fluctuation profiles in inhomogeneous fluids
,”
Phys. Rev. Lett.
125
,
268004
(
2020
).
19.
S. M.
Tschopp
and
J. M.
Brader
, “
Fundamental measure theory of inhomogeneous two-body correlation functions
,”
Phys. Rev. E
103
,
042103
(
2021
).
20.
J.
Richardi
,
P. H.
Fries
, and
H.
Krienke
, “
The solvation of ions in acetonitrile and acetone: A molecular Ornstein–Zernike study
,”
J. Chem. Phys.
108
,
4079
4089
(
1998
).
21.
D.
Beglov
and
B.
Roux
, “
An integral equation to describe the solvation of polar molecules in liquid water
,”
J. Phys. Chem. B
101
,
7821
7826
(
1997
).
22.
N.
Yoshida
, “
Role of solvation in drug design as revealed by the statistical mechanics integral equation theory of liquids
,”
J. Chem. Inf. Model.
57
,
2646
2656
(
2017
).
23.
S.
Cao
,
M. L.
Kalin
, and
X.
Huang
, “
EPISOL: A software package with expanded functions to perform 3D-RISM calculations for the solvation of chemical and biological molecules
,”
J. Comput. Chem.
44
,
1536
1549
(
2023
).
24.
D. J.
Sindhikara
and
F.
Hirata
, “
Analysis of biomolecular solvation sites by 3D-RISM theory
,”
J. Phys. Chem. B
117
,
6718
6723
(
2013
).
25.
M. L.
Samways
,
R. D.
Taylor
,
H. E.
Bruce Macdonald
, and
J. W.
Essex
, “
Water molecules at protein–drug interfaces: Computational prediction and analysis methods
,”
Chem. Soc. Rev.
50
,
9104
9120
(
2021
).
26.
E.
Brini
,
C. J.
Fennell
,
M.
Fernandez-Serra
,
B.
Hribar-Lee
,
M.
Lukšč
, and
K. A.
Dill
, “
How water's properties are encoded in its molecular structure and energies
,”
Chem. Rev.
117
,
12385
12414
(
2017
).
27.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
28.
F.
Carvalho
and
J.
Braga
, “
Radial distribution function for liquid gallium from experimental structure factor: A hopfield neural network approach
,”
J. Mol. Model.
26
,
193
(
2020
).
29.
F. S.
Carvalho
and
J. P.
Braga
, “
Partial radial distribution functions for a two-component glassy solid, GeSe3, from scattering experimental data using an artificial intelligence framework
,”
J. Mol. Model.
28
,
99
(
2022
).
30.
R. E. A.
Goodall
and
A. A.
Lee
, “
Data-driven approximations to the bridge function yield improved closures for the Ornstein–Zernike equation
,”
Soft Matter
17
,
5393
5400
(
2021
).
31.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
32.
S.
Cai
,
Z.
Mao
,
Z.
Wang
,
M.
Yin
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for fluid mechanics: A review
,”
Acta Mech. Sin.
37
,
1727
1738
(
2021
).
33.
M.
Raissi
,
A.
Yazdani
, and
G. E.
Karniadakis
, “
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
,”
Science
367
,
1026
1030
(
2020
).
34.
W.
Chen
,
Q.
Wang
,
J. S.
Hesthaven
, and
C.
Zhang
, “
Physics-informed machine learning for reduced-order modeling of nonlinear problems
,”
J. Comput. Phys.
446
,
110666
(
2021
).
35.
S.
Cai
,
Z.
Wang
,
S.
Wang
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks for heat transfer problems
,”
J. Heat Transfer
143
,
060801
(
2021
).
36.
O.
Hennigh
,
S.
Narasimhan
,
M. A.
Nabian
,
A.
Subramaniam
,
K.
Tangsali
,
Z.
Fang
,
M.
Rietmann
,
W.
Byeon
, and
S.
Choudhry
, “
NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework
,” in
International Conference on Computational Science
(
Springer
,
2021
), pp.
447
461
.
37.
S.
Cuomo
,
V. S.
Di Cola
,
F.
Giampaolo
,
G.
Rozza
,
M.
Raissi
, and
F.
Piccialli
, “
Scientific machine learning through physics–informed neural networks: Where we are and what's next
,”
J. Sci. Comput.
92
,
88
(
2022
).
38.
Y.
Khoo
,
J.
Lu
, and
L.
Ying
, “
Solving parametric PDE problems with artificial neural networks
,”
Eur. J. Appl. Math.
32
,
421
435
(
2021
).
39.
H.
Antil
,
H. C.
Elman
,
A.
Onwunta
, and
D.
Verma
, “
A deep neural network approach for parameterized PDES and Bayesian inverse problems
,”
Mach. Learn.-Sci. Technol.
4
(3),
035015
(
2023
).
40.
L.
Lu
,
P.
Jin
,
G.
Pang
,
Z.
Zhang
, and
G. E.
Karniadakis
, “
Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
,”
Nat. Mach. Intell.
3
,
218
229
(
2021
).
41.
F. S.
Carvalho
and
J. P.
Braga
, “
Physics informed neural networks applied to liquid state theory
,”
J. Mol. Liq.
367
,
120504
(
2022
).
42.
M.
Tancik
,
P.
Srinivasan
,
B.
Mildenhall
,
S.
Fridovich-Keil
,
N.
Raghavan
,
U.
Singhal
,
R.
Ramamoorthi
,
J.
Barron
, and
R.
Ng
, “
Fourier features let networks learn high frequency functions in low dimensional domains
,”
Adv. Neural Inf. Process. Syst.
33
,
7537
7547
(
2020
).
43.
S.
Wang
,
Y.
Teng
, and
P.
Perdikaris
, “
Understanding and mitigating gradient flow pathologies in physics-informed neural networks
,”
SIAM J. Sci. Comput.
43
,
A3055
A3081
(
2021
).
44.
L.
McClenny
and
U.
Braga-Neto
, “
Self-adaptive physics-informed neural networks using a soft attention mechanism
,” (
2020
).
45.
A.
Jaiswal
,
A. S.
Bharadwaj
, and
Y.
Singh
, “
Communication: Integral equation theory for pair correlation functions in a crystal
,”
J. Chem. Phys.
140
,
211103
(
2014
).
46.
D.
Chandler
, “
Derivation of an integral equation for pair correlation functions in molecular fluids
,”
J. Chem. Phys.
59
,
2742
2746
(
2003
).
47.
A. J.
Greenfield
,
J.
Wellendorf
, and
N.
Wiser
, “
X-ray determination of the static structure factor of liquid Na and K
,”
Phys. Rev. A
4
,
1607
1616
(
1971
).
48.
D.-M.
Duh
and
D.
Henderson
, “
Integral equation theory for Lennard-Jones fluids: The bridge function and applications to pure fluids and mixtures
,”
J. Chem. Phys.
104
,
6742
6754
(
1996
).
49.
S.
Wang
,
X.
Yu
, and
P.
Perdikaris
, “
When and why PINNs fail to train: A neural tangent kernel perspective
,”
J. Comput. Phys.
449
,
110768
(
2022
).
50.
P.
Ramachandran
,
B.
Zoph
, and
Q. V.
Le
, “
Searching for activation functions
,” (
2017
).
51.
Z.
Chen
,
Y.
Liu
, and
H.
Sun
, “
Physics-informed learning of governing equations from scarce data
,”
Nat. Commun.
12
,
6136
(
2021
).
52.
S.
Wang
,
H.
Wang
, and
P.
Perdikaris
, “
Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
,”
Sci. Adv.
7
(40),
eabi8605
(
2021
).
53.
S.
Loffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” in International Conference on Machine Learning (PMLR, 2015), pp.
448
456
.
54.
R.
Basri
,
M.
Galun
,
A.
Geifman
,
D.
Jacobs
,
Y.
Kasten
, and
S.
Kritchman
, “
Frequency bias in neural networks for input of non-uniform density
,” in
International Conference on Machine Learning
(
PMLR
,
2020
), pp.
685
694
.
55.
N.
Rahaman
,
A.
Baratin
,
D.
Arpit
,
F.
Draxler
,
M.
Lin
,
F.
Hamprecht
,
Y.
Bengio
, and
A.
Courville
, “
On the spectral bias of neural networks
,” in
International Conference on Machine Learning
(
PMLR
,
2019
), pp.
5301
5310
.
56.
S.
Wang
,
H.
Wang
, and
P.
Perdikaris
, “
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDES with physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
384
,
113938
(
2021
).
57.
X.
Glorot
and
Y.
Bengio
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
JMLR Workshop and Conference Proceedings
,
2010
), pp.
249
256
.
58.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” (
2014
).
59.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
60.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
et al, “
Pytorch: An imperative style, high-performance deep learning library
,”
Adv. Neural Inf. Process. Sys.
32
,
8024
8035
(
2019
).
61.
F.
Lado
, “
Numerical fourier transforms in one, two, and three dimensions for liquid state calculations
,”
J. Comput. Phys.
8
,
417
433
(
1971
).
62.
E. C.
Svensson
,
V. F.
Sears
,
A. D. B.
Woods
, and
P.
Martel
, “
Neutron-diffraction study of the static structure factor and pair correlations in liquid 4 He
,”
Phys. Rev. B
21
,
3638
3651
(
1980
).
63.
J. L.
Yarnell
,
M. J.
Katz
,
R. G.
Wenzel
, and
S. H.
Koenig
, “
Structure factor and radial distribution function for liquid argon at 85 °K
,”
Phys. Rev. A
7
,
2130
2144
(
1973
).
64.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
A411
(
1964
).
65.
F.
Carvalho
,
J.
Braga
,
M.
Alves
, and
C.
Gonçalves
, “
Neural network in the inverse problem of liquid argon structure factor: From gas-to-liquid radial distribution function
,”
Theor. Chem. Acc.
139
,
29
(
2020
).
66.
D. D.
Carley
, “
Thermodynamic properties of a square-well fluid in the liquid and vapor regions
,”
J. Chem. Phys.
78
,
5776
5781
(
1983
).
67.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
, “
Structural and thermodynamic properties of hard-sphere fluids
,”
J. Chem. Phys.
153
,
120901
(
2020
).
68.
A.
Trokhymchuk
,
I.
Nezbeda
,
J.
Jirsák
, and
D.
Henderson
, “
Hard-sphere radial distribution function again
,”
J. Chem. Phys.
123
,
024501
(
2005
).
69.
D.
Henderson
,
W. G.
Madden
, and
D. D.
Fitts
, “
Monte Carlo and hypernetted chain equation of state for the square-well fluid
,”
J. Chem. Phys.
64
,
5026
5034
(
1976
).
You do not currently have access to this content.