Analytical solutions are practical tools in ocean engineering, but their derivation is often constrained by the complexities of the real world. This underscores the necessity for alternative approaches. In this study, the potential of Physics-Informed Neural Networks (PINN) for solving the one-dimensional vertical suspended sediment mixing (settling-diffusion) equation which involves simplified and arbitrary vertical Ds profiles is explored. A new approach of temporal Normalized Physics-Informed Neural Networks (T-NPINN), which normalizes the time component is proposed, and it achieves a remarkable accuracy (Mean Square Error of 10 5 and Relative Error Loss of 10 4). T-NPINN also proves its ability to handle the challenges posed by long-duration spatiotemporal models, which is a formidable task for conventional PINN methods. In addition, the T-NPINN is free of the limitations of numerical methods, e.g., the susceptibility to inaccuracies stemming from the discretization and approximations intrinsic to their algorithms, particularly evident within intricate and dynamic oceanic environments. The demonstrated accuracy and versatility of T-NPINN make it a compelling complement to numerical techniques, effectively bridging the gap between analytical and numerical approaches and enriching the toolkit available for oceanic research and engineering.

1.
S.
Zhang
,
P.
Nielsen
,
P.
Perrochet
,
B.
Xu
,
Y.
Jia
, and
M.
Wen
, “
Derivation of settling velocity, eddy diffusivity and pick-up rate from field-measured suspended sediment concentration profiles in the horizontally uniform but vertically unsteady scenario
,”
Appl. Ocean Res.
107
,
102485
(
2021
).
2.
W. C.
Edge
,
M. D.
Rayson
,
N. L.
Jones
, and
G. N.
Ivey
, “
In situ estimation of erosion model parameters using an advection-diffusion model and Bayesian inversion
,”
J. Adv. Model. Earth Syst.
15
,
e2022MS003500
(
2023
).
3.
P.
Nielsen
, “
Field measurements of time-averaged suspended sediment concentrations under waves
,”
Coastal Eng.
8
,
51
72
(
1984
).
4.
R.
Soulsby
,
Dynamics of Marine Sands: A Manual for Practical Applications
(
Thomas Telford
,
1997
).
5.
T.
Vijverberg
,
J. C.
Winterwerp
,
S. G. J.
Aarninkhof
, and
H.
Drost
, “
Fine sediment dynamics in a shallow lake and implication for design of hydraulic works
,”
Ocean Dyn.
61
,
187
202
(
2011
).
6.
D.
Prandle
, “
Tidal characteristics of suspended sediment concentrations
,”
J. Hydraul. Eng.
123
,
341
350
(
1997
).
7.
E.
Burman
and
A.
Ern
, “
Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations
,”
Math. Comp.
76
,
1119
1140
(
2007
).
8.
Y.
Zheng
,
C.
Li
, and
Z.
Zhao
, “
A note on the finite element method for the space-fractional advection diffusion equation
,”
Computers Math. Appl.
59
,
1718
1726
(
2010
).
9.
S.
Dhawan
,
S.
Kapoor
, and
S.
Kumar
, “
Numerical method for advection diffusion equation using FEM and B-splines
,”
J. Comput. Sci.
3
,
429
437
(
2012
).
10.
M.
Sari
,
G.
Gürarslan
, and
A.
Zeytinoğlu
, “
High-order finite difference schemes for solving the advection-diffusion equation
,”
MCA
15
,
449
460
(
2010
).
11.
F. U.
Prieto
,
J. J. B.
Muñoz
, and
L. G.
Corvinos
, “
Application of the generalized finite difference method to solve the advection–diffusion equation
,”
J. Comput. Appl. Mathematics
235
,
1849
1855
(
2011
).
12.
R.
Cao
,
S.
Wang
,
G.
Xu
, and
X.
Lv
, “
Characteristics of liquefied soil motion in wavy environment
,”
Phys. Fluids
31
,
073102
(
2019
).
13.
C.
Ollivier-Gooch
and
M.
Van Altena
, “
A high-order-accurate unstructured mesh finite-volume scheme for the advection–diffusion equation
,”
J. Comput. Phys.
181
,
729
752
(
2002
).
14.
S.
Zhang
,
J.
Wu
,
Y.
Jia
,
Y.-G.
Wang
,
Y.
Zhang
, and
Q.
Duan
, “
A temporal lasso regression model for the emergency forecasting of the suspended sediment concentrations in coastal oceans: Accuracy and interpretability
,”
Eng. Appl. Artif. Intell.
100
,
104206
(
2021
).
15.
S.
Zhang
,
J.
Wu
,
Y.-G.
Wang
,
D.-S.
Jeng
, and
G.
Li
, “
A physics-informed statistical learning framework for forecasting local suspended sediment concentrations in marine environment
,”
Water Res.
218
,
118518
(
2022
).
16.
I.
Boztosun
and
A.
Charafi
, “
An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods
,”
Eng. Anal. Boundary Elements
26
,
889
895
(
2002
).
17.
M.
Askari
and
H.
Adibi
, “
Numerical solution of advection–diffusion equation using meshless method of lines
,”
Iran. J. Sci. Technol. Trans. Sci.
41
,
457
464
(
2017
).
18.
J.
Zhang
,
F.
Wang
,
S.
Nadeem
, and
M.
Sun
, “
Simulation of linear and nonlinear advection-diffusion problems by the direct radial basis function collocation method
,”
Int. Commun. Heat Mass Transfer
130
,
105775
(
2022
).
19.
A.
Hauptmann
and
B.
Cox
, “
Deep learning in photoacoustic tomography: Current approaches and future directions
,”
J. Biomed. Opt.
25
,
112903
112903
(
2020
).
20.
B.
Yu
et al, “
The deep ritz method: A deep learning-based numerical algorithm for solving variational problems
,”
Commun. Math. Stat.
6
,
1
12
(
2018
).
21.
J.
Sirignano
and
K.
Spiliopoulos
, “
Dgm: A deep learning algorithm for solving partial differential equations
,”
J. Comput. Phys.
375
,
1339
1364
(
2018
).
22.
R. T.
Chen
,
Y.
Rubanova
,
J.
Bettencourt
, and
D. K.
Duvenaud
, “
Neural ordinary differential equations
,”
Adv. Neural Inf. Process. Syst.
31
,
6572
6583
(
2018
); available at https://dl.acm.org/doi/abs/10.5555/3327757.3327764.
23.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
24.
Y.
Zang
,
G.
Bao
,
X.
Ye
, and
H.
Zhou
, “
Weak adversarial networks for high-dimensional partial differential equations
,”
J. Comput. Phys.
411
,
109409
(
2020
).
25.
L.
Lyu
,
Z.
Zhang
,
M.
Chen
, and
J.
Chen
, “
MIM: A deep mixed residual method for solving high-order partial differential equations
,”
J. Comput. Phys.
452
,
110930
(
2022
).
26.
M.
Dissanayake
and
N.
Phan-Thien
, “
Neural-network-based approximations for solving partial differential equations
,”
Commun. Numer. Meth. Engng.
10
,
195
201
(
1994
).
27.
N.
Chang
,
Y.
Huai
,
T.
Liu
,
X.
Chen
, and
Y.
Jin
, “
Multi-physical predictions in electro-osmotic micromixer by auto-encoder physics-informed neural networks
,”
Phys. Fluids
35
,
102007
(
2023
).
28.
Y.
Guo
,
X.
Cao
,
J.
Song
,
H.
Leng
, and
K.
Peng
, “
An efficient framework for solving forward and inverse problems of nonlinear partial differential equations via enhanced physics-informed neural network based on adaptive learning
,”
Phys. Fluids
35
,
106603
(
2023
).
29.
H.
Eivazi
,
M.
Tahani
,
P.
Schlatter
, and
R.
Vinuesa
, “
Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations
,”
Phys. Fluids
34
,
075117
(
2022
).
30.
N.
Wang
,
Q.
Chen
, and
Z.
Chen
, “
Reconstruction of nearshore wave fields based on physics-informed neural networks
,”
Coastal Eng.
176
,
104167
(
2022
).
31.
H.
Tang
,
Y.
Liao
,
H.
Yang
, and
L.
Xie
, “
A transfer learning-physics informed neural network (TL-PINN) for vortex-induced vibration
,”
Ocean Eng.
266
,
113101
(
2022
).
32.
Q.
Jiang
,
X.
Wang
,
M.
Yu
,
M.
Tang
,
B.
Zhan
, and
S.
Dong
, “
Study on pile driving and sound propagation in shallow water using physics-informed neural network
,”
Ocean Eng.
281
,
114684
(
2023
).
33.
A.
Mazzino
,
S.
Musacchio
, and
A.
Vulpiani
, “
Multiple-scale analysis and renormalization for preasymptotic scalar transport
,”
Phys. Rev. E
71
,
011113
(
2005
).
34.
S.
Boi
,
A.
Mazzino
, and
G.
Lacorata
, “
Explicit expressions for eddy-diffusivity fields and effective large-scale advection in turbulent transport
,”
J. Fluid Mech.
795
,
524
548
(
2016
).
35.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
International Conference on Learning Representations (ICLR)
(
2015
).
36.
R.
Mattey
and
S.
Ghosh
, “
A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations
,”
Comput. Methods Appl. Mech. Eng.
390
,
114474
(
2022
).
37.
S.
Zhang
,
P.
Nielsen
,
P.
Perrochet
, and
Y.
Jia
, “
Multiscale superposition and decomposition of field-measured suspended sediment concentrations: Implications for extending 1DV models to coastal oceans with advected fine sediments
,”
JGR. Oceans
126
,
e2020JC016474
(
2021
).
38.
S.
Zhang
,
Y.
Zhang
,
J.
Xu
,
L.
Guo
,
G.
Li
,
Y.
Jia
,
L.
Qiao
,
J.
Wu
,
M.
Wen
, and
C.
Zhu
, “
In situ observations of hydro-sediment dynamics on the abandoned Diaokou lobe of the yellow river delta: Erosion mechanism and rate
,”
Estuarine, Coastal Shelf Sci.
277
,
108065
(
2022
).
39.
Y.
Liu
,
P.-A.
Garambois
,
A.
Terfous
, and
A.
Ghenaim
, “
Experimental investigations and three-dimensional computational fluid dynamics modeling of sediment transport in tanks influenced by cavities
,”
Phys. Fluids
35
,
093304
(
2023
).
40.
Z.
Tian
,
Y.
Jia
,
J.
Chen
,
J. P.
Liu
,
S.
Zhang
,
C.
Ji
,
X.
Liu
,
H.
Shan
,
X.
Shi
, and
J.
Tian
, “
Internal solitary waves induced deep-water nepheloid layers and seafloor geomorphic changes on the continental slope of the northern south China sea
,”
Phys. Fluids
33
,
053312
(
2021
).
41.
M.
Sanjou
and
Y.
Sugihara
, “
Experimental study on characteristics of turbulence and sediment transport produced by wind-induced water waves
,”
Phys. Fluids
35
,
022111
(
2023
).
42.
M. A.
Aleebrahim
and
M.
Jamali
, “
Laboratory study of instability-driven mixing of fluid mud under surface wave motion
,”
Phys. Fluids
35
,
086606
(
2023
).
43.
X.-A.
Li
,
Z.-Q. J.
Xu
, and
L.
Zhang
, “
A multi-scale dnn algorithm for nonlinear elliptic equations with multiple scales
,”
CiCP
28
,
1886
1906
(
2020
).
44.
Z.
Liu
,
W.
Cai
, and
Z.-Q. J.
Xu
, “
Multi-scale deep neural network (MSCALEDNN) for solving Poisson–Boltzmann equation in complex domains
,”
CiCP.
28
,
1970
2001
(
2020
).
45.
S.
Wang
,
H.
Wang
, and
P.
Perdikaris
, “
On the eigenvector bias of fourier feature networks: From regression to solving multi-scale PDES with physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
384
,
113938
(
2021
).
46.
B.
Wang
, “
Multi-scale deep neural network (MSCALEDNN) methods for oscillatory stokes flows in complex domains
,”
CiCP.
28
,
2139
2157
(
2020
).
47.
X.-A.
Li
,
Z.-Q. J.
Xu
, and
L.
Zhang
, “
Subspace decomposition based DNN algorithm for elliptic type multi-scale PDES
,”
J. Comput. Phys.
488
,
112242
(
2023
).
48.
F.
Cecconi
,
A.
Puglisi
,
A.
Sarracino
, and
A.
Vulpiani
, “
Anomalous mobility of a driven active particle in a steady laminar flow
,”
J. Phys: Condens. Matter
30
,
264002
(
2018
).
49.
S.
Boi
,
A.
Mazzino
, and
P.
Muratore-Ginanneschi
, “
Eddy diffusivities of inertial particles in random gaussian flows
,”
Phys. Rev. Fluids
2
,
014602
(
2017
).
50.
Y.
Zhu
, “
Domain decomposition preconditioners for elliptic equations with jump coefficients
,”
Numer. Linear Algebra Appl.
15
,
271
289
(
2008
).
51.
K.
Wang
,
W.
Zhu
, and
P.
Zhong
, “
Robust support vector regression with generalized loss function and applications
,”
Neural Process. Lett.
41
,
89
106
(
2015
).
52.
K.
Li
,
K.
Tang
,
T.
Wu
, and
Q.
Liao
, “
D3m: A deep domain decomposition method for partial differential equations
,”
IEEE Access
8
,
5283
5294
(
2020
).
53.
S.
Boi
, “
Exact results on the large-scale stochastic transport of inertial particles including the basset history term
,”
Phys. Fluids
31
,
063304
(
2019
).
You do not currently have access to this content.