The main topic of the paper is to investigate the generalized (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) and Korteweg–de Vries (KdV) equations, which are widely used in many physical areas, especially in fluids. A new Wronskian formulation is presented for these two equations associated with the bilinear Bäcklund transformation. Based on Wronskian identities of the bilinear Kadomtsev–Petviashvili (KP) hierarchy, the Wronskian determinant solution is verified by a direct and concise calculation. The newly introduced Wronskian formulation provides a comprehensive way for building rational solutions. A few rational Wronskian solutions of lower order are computed for the generalized (2 + 1)-dimensional DJKM equation. Our work can show that the extended (2 + 1)-dimensional KdV equation possesses the similar rational Wronskian solutions through the corresponding logarithmic transformation.

1.
H. B.
Peng
, “
Statistical fluid mechanics: Dynamics equations and linear response theory
,”
Phys. Fluids
35
(
7
),
071704
(
2023
).
2.
D.
Singh
and
R.
Arora
, “
Piston driven converging cylindrical shock waves in a non-ideal gas with azimuthal magnetic field
,”
Phys. Fluids
32
(
12
),
126116
(
2020
).
3.
X. Y.
Gao
,
Y. J.
Guo
, and
W. R.
Shan
, “
Theoretical investigations on a variable-coefficient generalized forced-perturbed Korteweg–de Vries–Burgers model for a dilated artery, blood vessel or circulatory system with experimental support
,”
Commun. Theor. Phys.
75
(
11
),
115006
(
2023
).
4.
A. K.
Dhar
and
J. T.
Kirby
, “
Fourth-order stability analysis for capillary-gravity waves on finite-depth currents with constant vorticity
,”
Phys. Fluids
35
(
2
),
026601
(
2023
).
5.
F. F.
Liu
,
X.
,
J. P.
Wang
, and
Y. C.
Wu
, “
Dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers
,”
Nonlinear Dyn.
111
(
11
),
10441
10458
(
2023
).
6.
F.
Cao
,
X.
,
Y. X.
Zhou
, and
X. Y.
Cheng
, “
Modified SEIAR infectious disease model for Omicron variants spread dynamics
,”
Nonlinear Dyn.
111
(
15
),
14597
14620
(
2023
).
7.
K. W.
Liu
,
X.
,
F.
Gao
, and
J.
Zhang
, “
Expectation-maximizing network reconstruction and most applicable network types based on binary time series data
,”
Physica D
454
(
15
),
133834
(
2023
).
8.
X.
and
S. J.
Chen
, “
N-soliton solutions and associated integrability for a novel (2 + 1)-dimensional generalized KdV equation
,”
Chaos, Solitons Fractals
169
,
113291
(
2023
).
9.
Y.
Chen
,
X.
, and
X. L.
Wang
, “
Bäcklund transformation, Wronskian solutions and interaction solutions to the (3 + 1)-dimensional generalized breaking soliton equation
,”
Eur. Phys. J. Plus
138
(
6
),
492
(
2023
).
10.
A. M.
Wazwaz
,
W.
Alhejaili
, and
S. A.
El-Tantawy
, “
Study on extensions of (modified) Korteweg–de Vries equations: Painlevé integrability and multiple soliton solutions in fluid mediums
,”
Phys. Fluids
35
(
9
),
093110
(
2023
).
11.
D.
Gao
,
X.
, and
M. S.
Peng
, “
Study on the (2 + 1)-dimensional extension of Hietarinta equation: Soliton solutions and Bäcklund transformation
,”
Phys. Scr.
98
(
9
),
095225
(
2023
).
12.
W. X.
Ma
, “
The algebraic structures of isospectral Lax operators and applications to integrable equations
,”
J. Phys. A
25
(
20
),
5329
5343
(
1992
).
13.
S. Y.
Lou
, “
Symmetries of the Kadomtsev–Petviashvili equation
,”
J. Phys. A
26
(
17
),
4387
4394
(
1993
).
14.
B. B.
Kadomtsev
and
V. I.
Petviashvili
, “
On the stability of solitary waves in weakly dispersive media
,”
Sov. Phys. Dokl.
15
(
6
),
539
541
(
1970
).
15.
X. B.
Hu
and
Y.
Li
, “
Bäcklund transformation and nonlinear superposition formula of DJKM equation
,”
Acta Math. Sci.
11
(
2
),
164
172
(
1991
) (in Chinese).
16.
X. B.
Hu
and
Y.
Li
, “
A two-parameter Bäcklund transformation and nonlinear superposition formula of DJKM equation
,”
J. Grad. Sch. USTC
6
(
2
),
8
17
(
1989
) (in Chinese).
17.
Y. H.
Wang
,
H.
Wang
, and
C.
Temuer
, “
Lax pair, conservation laws, and multi-shock wave solutions of the DJKM equation with Bell polynomials and symbolic computation
,”
Nonlinear Dyn.
78
(
2
),
1101
1107
(
2014
).
18.
Y. Q.
Yuan
,
B.
Tian
,
W. R.
Sun
,
J.
Chai
, and
L.
Liu
, “
Wronskian and Grammian solutions for a (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation
,”
Comput. Math. Appl.
74
(
4
),
873
879
(
2017
).
19.
L.
Cheng
,
Y.
Zhang
, and
M. J.
Lin
, “
Lax pair and lump solutions for the (2 + 1)-dimensional DJKM equation associated with bilinear Bäcklund transformations
,”
Anal. Math. Phys.
9
,
1741
1752
(
2019
).
20.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
21.
W. X.
Ma
, “
Lump solutions to the Kadomtsev–Petviashvili equation
,”
Phys. Lett. A
379
(
36
),
1975
1978
(
2015
).
22.
W. X.
Ma
and
L. Q.
Zhang
, “
Lump solutions with higher-order rational dispersion relations
,”
Pramana
94
(
1
),
43
(
2020
).
23.
L.
Cheng
,
Y.
Zhang
, and
W. X.
Ma
, “
Wronskian N-soliton solutions to a generalized KdV equation in (2 + 1)-dimensions
,”
Nonlinear Dyn.
111
,
1701
1714
(
2023
).
24.
C. D.
Cheng
,
B.
Tian
,
T. Y.
Zhou
, and
Y.
Shen
, “
Wronskian solutions and Pfaffianization for a (3 + 1)-dimensional generalized variable-coefficient Kadomtsev–Petviashvili equation in a fluid or plasma
,”
Phys. Fluids
35
(
3
),
037101
(
2023
).
25.
F.
Guo
and
J.
Lin
, “
Interaction solutions between lump and stripe soliton to the (2 + 1)-dimensional Date–Jimbo–Kashiwara–Miwa equation
,”
Nonlinear Dyn.
96
,
1233
1241
(
2019
).
26.
S. Y.
Lou
, “
A novel (2 + 1)-dimensional integrable KdV equation with peculiar solutions structures
,”
Chin. Phys. B
29
(
8
),
080502
(
2020
).
27.
X. B.
Wang
,
M.
Jia
, and
S. Y.
Lou
, “
Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2 + 1)-dimensional integrable KdV equation
,”
Chin. Phys. B
30
(
1
),
010501
(
2021
).
28.
L.
Cheng
,
W. X.
Ma
,
Y.
Zhang
, and
J. Y.
Ge
, “
Integrability and lump solutions to an extended (2 + 1)-dimensional KdV equation
,”
Eur. Phys. J. Plus
137
,
902
(
2022
).
29.
H. L.
Wu
,
S. W.
Fan
,
J. X.
Fei
, and
Z. Y.
Ma
, “
The D'Alembert type waves and the soliton molecules in a (2 + 1)-dimensional Kadomtsev–Petviashvili with its hierarchy equation
,”
Commun. Theor. Phys.
73
(
10
),
105002
(
2021
).
30.
W. X.
Ma
, “
Lump waves in a spatial symmetric nonlinear dispersive wave model in (2 + 1)-dimensions
,”
Mathematics
11
(
22
),
4664
(
2023
).
31.
B.
Liu
,
X. E.
Zhang
,
B.
Wang
, and
X.
, “
Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential
,”
Mod. Phys. Lett. B
36
(
15
),
2250057
(
2022
).
32.
Y. H.
Yin
and
X.
, “
Dynamic analysis on optical pulses via modified PINNs: Soliton solutions, rogue waves and parameter discovery of the CQ-NLSE
,”
Commun. Nonlinear Sci. Numer. Simul.
126
,
107441
(
2023
).
33.
W. X.
Ma
and
Y.
You
, “
Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions
,”
Trans. Am. Math. Soc.
357
(
5
),
1753
1778
(
2004
).
34.
W. X.
Ma
,
C. X.
Li
, and
J. S.
He
, “
A second Wronskian formulation of the Boussinesq equation
,”
Nonlinear Anal.
70
,
4245
4258
(
2009
).
35.
W. X.
Ma
, “
A polynomial conjecture connected with rogue waves in the KdV equation
,”
Partial Differ. Equations Appl. Math.
3
,
100023
(
2021
).
36.
Y.
Chen
and
X.
, “
Wronskian solutions and linear superposition of rational solutions to B-type Kadomtsev–Petviashvili equation
,”
Phys. Fluids
35
(
10
),
106613
(
2023
).
37.
X.
and
X. J.
He
, “
Bäcklund transformation to solve the generalized (3 + 1)-dimemsional KP-YTSF equation and kinky periodic-wave, Wronskian and Grammian solutions
,”
J. Appl. Anal. Comput.
13
(
2
),
758
781
(
2023
).
38.
J. J. C.
Nimmo
and
J. X.
Zhao
, “
Determinant and Pfaffian solutions of soliton equations
,”
Phys. Scr.
89
,
038005
(
2014
).
39.
L.
Cheng
,
Y.
Zhang
, and
Y. W.
Hu
, “
Linear superposition and interaction of Wronskian solutions to an extended (2 + 1)-dimensional KdV equation
,”
AIMS Math.
8
(
7
),
16906
16925
(
2023
).
40.
N. C.
Freeman
and
J. J. C.
Nimmo
, “
Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique
,”
Phys. Lett. A
95
(
1
),
1
3
(
1983
).
41.
J. J. C.
Nimmo
and
N. C.
Freeman
, “
A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian
,”
Phys. Lett. A
95
(
1
),
4
6
(
1983
).
42.
B.
Dorrizzi
,
B.
Grammaticos
,
A.
Ramani
, and
P.
Winternitz
, “
Are all the equations of the KP hierarchy integrable?
,”
J. Math. Phys.
27
(
12
),
2848
2852
(
1986
).
43.
J. P.
Wu
, “
A new Wronskian condition for a (3 + 1)-dimensional nonlinear evolution equation
,”
Chin. Phys. Lett.
28
(
5
),
050501
(
2011
).
44.
M.
Sato
, “
Soliton equations as dynamical systems on a infinite dimensional Grassmann manifolds (Random systems and dynamical systems)
,”
RIMS Kokyuroku
439
,
30
46
(
1981
).
45.
R.
Hirota
, “
Reduction of soliton equations in bilinear form
,”
Physica D
18
(
1–3
),
161
170
(
1986
).
46.
Y. W.
Zhao
,
J. W.
Xia
, and
X.
, “
The variable separation solution, fractal and chaos in an extended coupled (2 + 1)-dimensional Burgers system
,”
Nonlinear Dyn.
108
(
4
),
4195
4205
(
2022
).
47.
S. J.
Chen
,
X.
, and
Y. H.
Yin
, “
Dynamic behaviors of the lump solutions and mixed solutions to a (2 + 1)-dimensional nonlinear model
,”
Commun. Theor. Phys.
75
(
5
),
055005
(
2023
).
48.
X.
and
S. J.
Chen
, “
Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types
,”
Nonlinear Dyn.
103
(
1
),
947
977
(
2021
).
49.
S.
Singh
and
S.
Saha Ray
, “
Newly exploring the Lax pair, bilinear form, bilinear Bäcklund transformation through binary Bell polynomials, and analytical solutions for the (2 + 1)-dimensional generalized Hirota–Satsuma–Ito equation
,”
Phys. Fluids
35
(
8
),
087134
(
2023
).
50.
A. M.
Wazwaz
,
W.
Alhejaili
, and
S. A.
El-Tantawy
, “
Analytical study on two new (3 + 1)-dimensional Painlevé integrable equations: Kink, lump, and multiple soliton solutions in fluid mediums
,”
Phys. Fluids
35
(
9
),
093119
(
2023
).
You do not currently have access to this content.