Because bloodstain patterns resulting from close-range shooting are intrinsically different from those of long-range shooting, an accurate interpretation and delineation of these phenomena are essential in forensic science and crime scene analysis. Such a delineation would be helpful, for example, to distinguish whether a suicide or a homicide had happened. If the shooting was from a long-range (most likely a homicide), muzzle gases would not be able to influence blood spatter ejected from a victim. However, in the case of a close-range shooting, muzzle gases would greatly influence blood spatter. Herein, the effect of the muzzle gases on bloodstain patterns is studied. A de Laval nozzle is used to mimic an issue of supersonic “muzzle” gas from a gun barrel. The supersonic gas flow passes through a cylinder containing defibrinated sheep blood, which is blown off and atomized into numerous drops. These drops fly away and settle onto the floor or onto vertical walls at various distances from the cylinder exit. Viscoelasticity of the defibrinated sheep blood is enhanced by adding Xanthan to model different states of blood corresponding to different conditions. An impact of a vertically-released single drop onto an inclined substrate was also studied to elucidate splashing regimes/criteria of the blood drops of different viscoelasticity levels. We found that stronger elastic forces facilitated formation of bloodstains with higher ellipticity at a higher impact angles.

1.
S.
Weidman
,
Strengthening Forensic Science in the United States: A Path Forward
(
National Academies Press
,
2009
).
2.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017
).
3.
D.
Attinger
,
C.
Moore
,
A.
Donaldson
,
A.
Jafari
, and
H. A.
Stone
, “
Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities
,”
Forensic Sci. Int.
231
,
375
(
2013
).
4.
W. F.
Rowe
, “
Errors in the determination of the point of origin of bloodstains
,”
Forensic Sci. Int.
161
,
47
(
2006
).
5.
K. G.
de Bruin
,
R. D.
Stoel
, and
J. C.
Limborgh
, “
Improving the point of origin determination in bloodstain pattern analysis
,”
J. Forensic Sci.
56
,
1476
(
2011
).
6.
N.
Behrooz
,
L.
Hulse‐Smith
, and
S.
Chandra
, “
An evaluation of the underlying mechanisms of bloodstain pattern analysis error
,”
J. Forensic Sci.
56
,
1136
(
2011
).
7.
M.
Illes
,
A.
Carter
,
P.
Laturnus
, and
A.
Yamashita
, “
Use of the Backtrack™ computer program for bloodstain pattern analysis of stains from downward-moving drops
,”
Can. Soc. Forensic Sci.
38
,
213
(
2005
).
8.
A.
Carter
, “
The directional analysis of bloodstain patterns theory and experimental validation
,”
Can. Soc. Forensic Sci.
34
,
173
(
2001
).
9.
R.
Kanable
, “
BackTrack going forward
,”
Law Enforcement Technol.
33
,
40
(
2006
).
10.
A.
Carter
,
J.
Forsythe-Erman
,
V.
Hawkes
, and
M.
Illes
, “
Validation of the BackTrack suite of programs for bloodstain pattern analysis
,”
J. Forensic Identif.
56
,
242
(
2006
).
11.
A.
Carter
,
M.
Illes
,
K.
Maloney
,
A.
Yamashita
,
B.
Allen
,
B.
Brown
,
L.
Davidson
,
G.
Ellis
,
J.
Gallant
, and
A.
Gradkowski
, “
Further validation of the BackTrack (TM) computer program for bloodstain pattern analysis: Precision and accuracy
,”
IABPA News
21
,
15
(
2005
).
12.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability (Courier Corporation
(
Dover Publications, Inc
.
New York
,
2013
).
13.
M. T.
Murzabaeb
and
A. L.
Yarin
, “
Dynamics of sprinkler jets
,”
Fluid Dyn.
20
,
715
(
1986
).
14.
I. V.
Roisman
,
L.
Araneo
, and
C.
Tropea
, “
Effect of ambient pressure on penetration of a diesel spray
,”
Int. J. Multiphase Flow
33
,
904
(
2007
).
15.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
16.
A. L.
Yarin
,
L. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
17.
P. M.
Comiskey
and
A. L.
Yarin
, “
Friction coefficient of an intact free liquid jet moving in air
,”
Exp. Fluids
59
,
1
(
2018
).
18.
S.
De Gruttola
,
K.
Boomsma
, and
D.
Poulikakos
, “
Computational simulation of a non‐Newtonian model of the blood separation process
,”
Artif. Organs
29
,
949
(
2005
).
19.
S.
Charm
and
G.
Kurland
, “
Viscometry of human blood for shear rates of 0–100,000 sec − 1
,”
Nature
206
,
617
(
1965
).
20.
A.
Kolbasov
,
P. M.
Comiskey
,
R. P.
Sahu
,
S.
Sinha-Ray
,
A. L.
Yarin
,
B. S.
Sikarwar
,
S.
Kim
,
T. Z.
Jubery
, and
D.
Attinger
, “
Blood rheology in shear and uniaxial elongation
,”
Rheol. Acta
55
,
901
(
2016
).
21.
S.
Chien
,
R.
King
,
R.
Skalak
,
S.
Usami
, and
A.
Copley
, “
Viscoelastic properties of human blood and red cell suspensions
,”
Biorheology
12
,
341
(
1975
).
22.
A.
Copley
,
R.
King
,
S.
Chien
,
S.
Usami
,
R.
Skalak
, and
C.
Huang
, “
Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear
,”
Biorheology
12
,
257
(
1975
).
23.
M.
Brust
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P.
Arratia
, and
C.
Wagner
, “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
(
2013
).
24.
C.
Picart
,
J.-M.
Piau
,
H.
Galliard
, and
P.
Carpentier
, “
Human blood shear yield stress and its hematocrit dependence
,”
J. Rheol.
42
(
1
),
1
(
1998
).
25.
C.
Clasen
,
J.
Bico
,
V.
Entov
, and
G. H.
Mckinley
, “
Gobbling drops': The jetting–dripping transition in flows of polymer mixtures
,”
J. Fluid Mech.
636
,
5
(
2009
).
26.
D. D.
Joseph
,
J.
Belanger
, and
G.
Beavers
, “
Breakup of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
25
,
1263
(
1999
).
27.
F.
Mighri
,
P.
Carreau
, and
A.
Ajji
, “
Influence of elastic properties on drop deformation and breakup in shear flow
,”
J. Rheol.
42
,
1477
(
1998
).
28.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
(
2006
).
29.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
30.
V.
Bertola
, “
An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids
,”
Int. J. Heat Mass Transfer
52
,
1786
(
2009
).
31.
T.
Jiang
,
J.
Ouyang
,
B.
Yang
, and
J.
Ren
, “
The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate
,”
Comput. Mech.
45
,
573
(
2010
).
32.
J.
Cooper-White
,
R.
Crooks
, and
D.
Boger
, “
A drop impact study of worm-like viscoelastic surfactant mixtures
,”
Colloids Surf.
210
,
105
(
2002
).
33.
A.
Carré
,
J.-C.
Gastel
, and
M. E.
Shanahan
, “
Viscoelastic effects in the spreading of liquids
,”
Nature
379
,
432
(
1996
).
34.
P.
Comiskey
,
A. L.
Yarin
,
S.
Kim
, and
D.
Attinger
, “
Prediction of blood back spatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
35.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Springer Science & Business Media
,
1999
).
36.
N.
Sliefert
,
G.
Li
,
J. B.
Michael
, and
A. L.
Yarin
, “
Experimental and numerical study of blood backspatter interaction with firearm propellant gases
,”
Phys. Fluids
33
,
043319
(
2021
).
37.
G.
Klingenberg
, “
Investigation of combustion phenomena associated with the flow of hot propellant gases. III: Experimental survey of the formation and decay of muzzle flow fields and of pressure measurements
,”
Combust. Flame
29
,
289
(
1977
).
38.
P.
Comiskey
and
A. L.
Yarin
, “
Self-similar turbulent vortex rings: Interaction of propellant gases with blood backspatter and the transport of gunshot residue
,”
J. Fluid Mech.
876
,
859
(
2019
).
39.
G.
Li
,
N.
Sliefert
,
J. B.
Michael
, and
A. L.
Yarin
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
40.
P.
Eggins
and
D.
Jackson
, “
Laser-Doppler velocity measurements in an under-expanded free jet
,”
J. Phys. D: Appl. Phys.
7
,
1894
(
1974
).
41.
M. C.
Taylor
,
T. L.
Laber
,
B. P.
Epstein
,
D. S.
Zamzow
, and
D. P.
Baldwin
, “
The effect of firearm muzzle gases on the backspatter of blood
,”
Int. J. Legal Med.
125
,
617
(
2011
).
42.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
High-speed video analysis of forward and backward spattered blood droplets
,”
Forensic Sci. Int.
276
,
134
(
2017
).
43.
G.
Radford
,
M. C.
Taylor
,
J.
Kieser
,
J. N.
Waddell
,
K.
Walsh
,
J.
Schofield
,
R.
Das
, and
E.
Chakravorty
, “
Simulating backspatter of blood from cranial gunshot wounds using pig models
,”
Int. J. Legal Med.
130
,
985
(
2016
).
44.
J.
Huh
,
S.
Kim
,
B.-H.
Bang
,
A.
Aldalbahi
,
M.
Rahaman
,
A. L.
Yarin
, and
S. S.
Yoon
, “
Effect of muzzle gas on forward blood spatter from a gunshot: Experiments with a supersonic de Laval nozzle
,”
Phys. Fluids
35
,
097112
(
2023
).
45.
A. L.
Yarin
, “
Applications of fluid dynamics and mechanics of continua in forensics
,”
Phys. Fluids
35
,
120401
(
2023
).
46.
G.
Lee
,
D.
Attinger
,
K. F.
Martin
,
S.
Shiri
, and
J. C.
Bird
, “
Bloodstain tails: Asymmetry aids reconstruction of oblique impact
,”
Phys. Fluids
35
,
112113
(
2023
).
47.
M.
Stelter
,
G.
Brenn
,
A. L.
Yarin
,
R.
Singh
, and
F.
Durst
, “
Validation and application of a novel elongational device for polymer mixtures
,”
J. Rheol.
44
,
595
(
2000
).
48.
J.
Plog
,
J.
Wu
,
Y. J.
Dias
,
F.
Mashayek
,
L. F.
Cooper
, and
A. L.
Yarin
, “
Reopening dentistry after COVID-19: Complete suppression of aerosolization in dental procedures by viscoelastic Medusa Gorgo
,”
Phys. Fluids
32
,
083111
(
2020
).
49.
A. L.
Yarin
,
B.
Pourdeyhimi
, and
S.
Ramakrishna
,
Fundamentals and Applications of Micro-and Nanofibers
(
Cambridge University Press
,
Cambridge
,
2014
).
50.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman Scientific & Technical and John Wiley & Sons
,
Harlow, New York
, 1993).
51.
L.-P.
Hsiang
and
G. M.
Faeth
, “
Near-limit drop deformation and secondary breakup
,”
Int. J. Multiphase Flow
18
,
635
(
1992
).
52.
J. C.
Bird
,
S. S.
Tsai
, and
H. A.
Stone
, “
Inclined to splash: Triggering and inhibiting a splash with tangential velocity
,”
New J. Phys.
11
,
063017
(
2009
).
53.
M. R.
Badrossamay
,
H. A.
McIlwee
,
J. A.
Goss
, and
K. K.
Parker
, “
Nanofiber assembly by rotary jet-spinning
,”
Nano Lett.
10
,
2257
(
2010
).
54.
Y. I.
Kim
,
S.
An
,
J.
Huh
,
Y.-S.
Kim
,
J.
Heo
,
I.-S.
Song
,
A. L.
Yarin
, and
S. S.
Yoon
, “
Aerosol suppression from a handpiece using viscoelastic solution in confined dental office
,”
Phys. Fluids
34
,
103108
(
2022
).
55.
Y. I.
Kim
,
S.
An
,
J.
Huh
,
J.
Heo
,
J.
Lim
,
I.-S.
Song
,
A. L.
Yarin
, and
S. S.
Yoon
, “
Effect of polymer viscosity and viscoelasticity on tooth cooling and aerosolization during dental procedures
,”
Phys. Fluids
35
,
023112
(
2023
).
You do not currently have access to this content.