Under the linear approximation, we study the scattering of gravity-capillary waves on a bottom step. The boundary conditions can be satisfied by considering a countable number of evanescent modes that are localized near the bottom step. Such modes have certain specific features compared to similar modes for pure gravity waves. In particular, there exists an extra mode. When a numerical solution is calculated, this extra mode allows us to match in the fluid region and impose the additional condition at the surface, which arises for capillary gravity waves (and not for pure gravity waves). The approximate formulas are suggested for the transformation coefficients. By means of numerical calculations, we find the reflection and transmission coefficients of traveling waves and compare the results with the predictions of the approximate formulas. The approximate formulas are shown to agree well with the numerical data. Both numerical and approximate results agree with the energy flux conservation. We also study the wave transformation on the rectangular underwater bump and trench, which are straightforward extensions of our step calculations. We calculate the transformation coefficients numerically and illustrate the transformation by time-dependent results, which are also shown as animations in the supplementary material.

1.
H.
Lamb
,
Hydrodynamics
(
Cambridge University Press
,
Cambridge
,
1932
).
2.
E. F.
Bartholomeusz
, “
The reflection of long waves at a step
,”
Math. Proc. Cambridge Philos. Soc.
54
,
106
118
(
1958
).
3.
G. P.
Germain
, “
Coefficients de réflexion et de transmission en eau peu profonde
,” Proc. Inst. Budownictwa Wodnego, Gdansk, Rozprawy Hydrotechniczne
46
,
5
13
(
1984
) (in French).
4.
S. R.
Massel
,
Hydrodynamics of the Coastal Zone
(
Elsevier
,
1989
).
5.
M. W.
Dingemans
,
Water Wave Propagation over Uneven Bottoms. Part 1. Linear Wave Propagation
(
World Scientific
,
Singapore
,
1997
), p.
471
.
6.
N.
Mirchina
and
E.
Pelinovsky
, “
Nonlinear transformation of long waves at a bottom step
,”
J. Korean Soc. Coastal Ocean Eng.
4
,
161
167
(
1992
).
7.
K.
Takano
, “
Effets d'un obstacle parallelepipedique sur la propagation de la houle
,”
La Houille Blanche
46
,
247
267
(
1960
) (in French).
8.
K.
Takano
, “
Effet d'un changement brusque de profondeur sur une houle irrotationelle
,”
La Mer
5
,
100
116
(
1967
) (in French).
9.
S. R.
Massel
, “
Harmonic generation by waves propagating over a submerged step
,”
Coastal Eng.
7
,
357
380
(
1983
).
10.
J. N.
Newman
, “
Propagation of water waves over an infinite step
,”
J. Fluid Mech.
23
,
399
415
(
1965
).
11.
J. W.
Miles
, “
Surface-wave scattering matrix for a shelf
,”
J. Fluid Mech.
28
,
755
767
(
1967
).
12.
L. N.
Sretensky
,
Theory of Wave Motions in a Fluid
(
Nauka
,
Moscow
,
1977
) (in Russian).
13.
J. S.
Marshal
and
P. M.
Naghdi
, “
Wave reflection and transmission by steps and rectangular obstacles in channels of finite depth
,”
Theor. Comput. Fluid Dyn.
1
,
287
301
(
1990
).
14.
A. R.
Giniyatullin
,
A. A.
Kurkin
,
S. V.
Semin
, and
Y. A.
Stepanyants
, “
Transformation of narrowband wavetrains of surface gravity waves passing over a bottom step
,”
Math. Modell. Nat. Phenom.
9
,
73
82
(
2014
).
15.
A. A.
Kurkin
,
S. V.
Semin
, and
Y. A.
Stepanyants
, “
Transformation of surface waves over a bottom step
,”
Izv., Atmos. Oceanic Phys.
51
,
214
223
(
2015
).
16.
E. N.
Churaev
,
S. V.
Semin
, and
Y. A.
Stepanyants
, “
Transformation of internal waves passing over a bottom step
,”
J. Fluid Mech.
768
,
R3
(
2015
).
17.
J.
Bhattacharjee
,
D.
Karmakar
, and
T.
Sahoo
, “
Transformation of flexural gravity waves by heterogeneous boundaries
,”
J. Eng. Math.
62
,
173
188
(
2007
).
18.
D. V.
Evans
, “
The influence of surface tension on the reflection of water waves by a plane vertical barrier
,”
Math. Proc. Cambridge Philos. Soc.
64
,
795
810
(
1968
).
19.
S.
Mohapatra
, “
The effect of free-surface tension on scattering of water waves by small bottom undulation
,”
ANZIAM J.
58
,
E39
E80
(
2017
).
20.
D. V.
Evans
, “
The effect of surface tension on the waves produced by a heaving circular cylinder
,”
Math. Proc. Cambridge Philos. Soc.
64
,
833
847
(
1968
).
21.
P. F.
Rhodes-Robinson
, “
The effect of surface tension on the progressive waves due to incomplete vertical wave-makers in water of infinite depth
,”
Proc. R. Soc. A
435
,
293
319
(
1991
).
22.
R.
Harter
,
I. D.
Abrahams
, and
M. J.
Simon
, “
The effect of surface tension on trapped modes in water-wave problems
,”
Proc. R. Soc. A
463
,
147
180
(
2007
).
23.
R.
Harter
,
M. J.
Simon
, and
I. D.
Abrahams
, “
The effect of surface tension on localized free-surface oscillations about surface-piercing bodies
,”
Proc. R. Soc. A
464
,
3039
3054
(
2008
).
24.
P. F.
Rhodes-Robinson
, “
On the forced surface waves due to a vertical wave-maker in the presence of surface tension
,”
Proc. Cambridge Philos. Soc.
70
,
323
337
(
1971
).
25.
P. F.
Rhodes-Robinson
, “
Note on the reflextion of water waves at a wall in the presence of surface tension
,”
Math. Proc. Cambridge Philos. Soc.
92
,
369
373
(
1982
).
26.
C.
Fox
and
V.
Squire
, “
On the oblique reflexion and transmission of ocean waves at shore fast sea ice
,”
Philos. Trans. R. Soc., A
347
,
185
218
(
1994
).
27.
A. L.
Fabrikant
and
Y. A.
Stepanyants
,
Propagation of Waves in Shear Flows
(
World Scientific
,
Singapore
,
1998
), p.
287
.
28.
M. H.
Meylan
, “
Time-dependent motion of a floating circular elastic plate
,”
Fluids
6
,
29
(
2021
).
29.
K.-A.
Chang
,
T.-J.
Hsu
, and
P. L.-F.
Liu
, “
Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves
,”
Coastal Eng.
44
,
13
36
(
2001
).
30.
V.
Maderich
,
T.
Talipova
,
R.
Grimshaw
,
K.
Terletska
,
I.
Brovchenko
,
E.
Pelinovsky
, and
B. H.
Choi
, “
Interaction of a large amplitude interfacial solitary wave of depression with a bottom step
,”
Phys. Fluids
22
,
076602
(
2010
).
31.
T.
Talipova
,
K.
Terletska
,
V.
Maderich
,
I.
Brovchenko
,
K.
Jung
,
E.
Pelinovsky
, and
R.
Grimshaw
, “
Internal solitary wave transformation over a bottom step: Loss of energy
,”
Phys. Fluids
25
,
032110
(
2013
).
You do not currently have access to this content.