The transverse skin of dolphins exhibits a remarkable drag reduction effect. Although previous studies have identified the drag reduction effect of transverse grooves, no clear guidelines exist regarding the impact of groove parameters on turbulent drag reduction. Hence, this paper suggests a novel numerical study using the Reynolds-averaged Navier–Stokes method to investigate the influence of half-sine wave structure parameters on turbulent drag. The results showed that the aspect ratio of shape parameters significantly affected the drag reduction rate by altering the flow velocity and drag distribution near the wall and increasing the viscous sublayer thickness. Moreover, a novel index friction pressure ratio F P r was introduced to evaluate the drag reduction. It was revealed that the ratio F P r was stable at optimal drag reduction effect regardless of the velocity. By optimizing the F P r, a maximum drag reduction of 29.3% was achieved. These findings provide insight for optimizing transverse groove in drag-reducing surface applications.

1.
C.-C.
Chang
, “
Marine energy consumption, national economic activity, and greenhouse gas emissions from international shipping
,”
Energy Policy
41
,
843
848
(
2012
).
2.
N. K.
Jha
,
A.
Bhatt
, and
R. N.
Govardhan
, “
Effect of bubble distribution on wall drag in turbulent channel flow
,”
Exp. Fluids
60
(
8
),
127
(
2019
).
3.
C.
Wang
,
Y.
Lu
,
D.
Feng
,
J.
Zhou
,
Y.
Li
, and
H.
Zhang
, “
Experimental study on nanobubble distribution control method based on the slip drag reduction effect
,”
Tribol. Int.
177
,
107940
(
2023
).
4.
R.
Zhu
,
H.
Zhang
,
W.
Wen
,
X.
He
,
C.
Zhao
,
Y.
Liu
,
Q.
Zhuang
, and
Z.
Liu
, “
Flow-drag reduction performance of a resident electrolytic microbubble array and its mechanisms
,”
Ocean Eng.
268
,
113496
(
2023
).
5.
Y.
Gu
,
S.
Yu
,
J.
Mou
,
D.
Wu
, and
S.
Zheng
, “
Research progress on the collaborative drag reduction effect of polymers and surfactants
,”
Materials
13
(
2
),
444
(
2020
).
6.
L.
Qin
,
S.
Lu
,
J.
Liu
,
Y.
Wu
,
Z.
Ma
,
F. J.
Mawignon
, and
G.
Dong
, “
Bionic non-smooth epoxy resin coating with corrosion inhibitor for drag-reduction and durability
,”
Prog. Org. Coat.
173
,
107176
(
2022
).
7.
L.
Jiang
,
W.
Yang
,
L.
Xie
,
Y.
Liu
,
X.
Wang
,
X.
Wu
,
F.
Zhou
, and
H.
Hu
, “
Experimental study on mechanism of stable drag reduction with hydrogel interface
,”
Tribol. Int.
178
,
108013
(
2023
).
8.
M.
Fakhri
,
B.
Rezaee
,
H.
Pakzad
, and
A.
Moosavi
, “
Facile, scalable, and low-cost superhydrophobic coating for frictional drag reduction with anti-corrosion property
,”
Tribol. Int.
178
,
108091
(
2023
).
9.
X.
Lv
,
Y.
Qin
,
H.
Liang
,
B.
Zhao
,
Y.
He
, and
X.
Cui
, “
A facile method for constructing a superhydrophobic zinc coating on a steel surface with anti-corrosion and drag-reduction properties
,”
Appl. Surf. Sci.
562
,
150192
(
2021
).
10.
M.
Xu
,
N.
Yu
,
J.
Kim
, and
C.-J.
“Cj” Kim
, “
Superhydrophobic drag reduction in high-speed towing tank
,”
J. Fluid Mech.
908
,
A6
(
2021
).
11.
M. J.
Walsh
, “
Riblets as a viscous drag reduction technique
,”
AIAA J.
21
(
4
),
485
486
(
1983
).
12.
Z.
Ma
,
J.
Liu
,
X.
Zhang
,
R.
Deng
,
S.
Lu
,
Y.
Wu
,
L.
Qin
, and
G.
Dong
, “
Flexible surfaces prepared through direct ink writing with drag reduction and antifouling
,”
Colloids Surf., A
655
,
130233
(
2022
).
13.
F. J.
Mawignon
,
J.
Liu
,
L.
Qin
,
A. N.
Kouediatouka
,
Z.
Ma
,
B.
Lv
, and
G.
Dong
, “
The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction
,”
Ocean Eng.
275
,
114135
(
2023
).
14.
S.
Martin
and
B.
Bhushan
, “
Fluid flow analysis of continuous and segmented riblet structures
,”
RSC Adv.
6
(
13
),
10962
10978
(
2016
).
15.
D.
Chen
,
X.
Liu
,
X.
Cui
,
L.
Zhang
, and
H.
Chen
, “
Research progress and development trend of the drag reduction inspired by fish skin
,”
Prog. Org. Coat.
182
,
107613
(
2023
).
16.
Z.
Dou
,
J.
Wang
, and
D.
Chen
, “
Bionic research on fish scales for drag reduction
,”
J. Bionic Eng.
9
(
4
),
457
464
(
2012
).
17.
D.
Chen
,
X.
Cui
,
X.
Liu
, and
H.
Chen
, “
Bionic gradient flexible fish skin acts as a passive dynamic micro-roughness to drag reduction
,”
Surf. Coat. Technol.
457
,
129337
(
2023
).
18.
D.
Chen
,
H.
Chen
, and
X.
Cui
, “
Dual-coupling drag reduction inspired by tuna skin: Fan-shaped imbricated fish scale composited with flexible coating
,”
AIP Adv.
12
(
3
),
035218
(
2022
).
19.
Y.
Zhang
,
D.
Fan
,
X.
Feng
,
Y.
Hu
,
J.
Shi
, and
G.
Tian
, “
Drag reduction performance and mechanism of flexible conical microstructure film inspired by pufferfish epidermis
,”
Ocean Eng.
271
,
113760
(
2023
).
20.
X.
Feng
,
D.
Fan
,
G.
Tian
, and
Y.
Zhang
, “
Coupled bionic drag-reducing surface covered by conical protrusions and elastic layer inspired from pufferfish skin
,”
ACS Appl. Mater. Interfaces
14
(
28
),
32747
32760
(
2022
).
21.
X.
Feng
,
C.
Jia
,
D.
Fan
,
Y.
Hu
, and
G.
Tian
, “
Numerical analysis of drag reduction characteristics of biomimetic puffer skin: Effect of spinal arrangement
,”
AIP Adv.
11
(
6
),
065223
(
2021
).
22.
J.
Gray
, “
Studies in animal locomotion: VI. The propulsive powers of the dolphin
,”
J. Exp. Biol.
13
(
2
),
192
199
(
1936
).
23.
F. E.
Fish
and
C. A.
Hui
, “
Dolphin swimming—A review
,”
Mamm. Rev.
21
(
4
),
181
195
(
1991
).
24.
F. E.
Fish
, “
Power output and propulsive efficiency of swimming bottlenose dolphins (Tursiops truncatus)
,”
J. Exp. Biol.
185
(
1
),
179
193
(
1993
).).
25.
F. E.
Fish
, “
Transitions from drag-based to lift-based propulsion in mammalian swimming
,”
Am. Zool.
36
(
6
),
628
641
(
1996
).
26.
M.
Luhar
,
A. S.
Sharma
, and
B. J.
McKeon
, “
A framework for studying the effect of compliant surfaces on wall turbulence
,”
J. Fluid Mech.
768
,
415
441
(
2015
).
27.
P. W.
Carpenter
and
P. J.
Morris
, “
The effect of anisotropic wall compliance on boundary-layer stability and transition
,”
J. Fluid Mech.
218
(
1
),
171
(
1990
).
28.
L.
Li
,
B.
Liu
,
H.
Hao
,
L.
Li
, and
Z.
Zeng
, “
Investigation of the drag reduction performance of bionic flexible coating
,”
Phys. Fluids
32
(
8
),
084103
(
2020
).
29.
A. W.
Lang
,
E. M.
Jones
, and
F.
Afroz
, “
Separation control over a grooved surface inspired by dolphin skin
,”
Bioinspiration Biomimetics
12
(
2
),
026005
(
2017
).
30.
S. D.
Hall
,
M.
Behnia
,
C. A. J.
Fletcher
, and
G. L.
Morrison
, “
Investigation of the secondary corner vortex in a benchmark turbulent backward-facing step using cross-correlation particle imaging velocimetry
,”
Exp. Fluids
35
(
2
),
139
151
(
2003
).
31.
H.
Chen
,
Y.
Gao
,
H. A.
Stone
, and
J.
Li
, ““
Fluid bearing” effect of enclosed liquids in grooves on drag reduction in microchannels
,”
Phys. Rev. Fluids
1
(
8
),
083904
(
2016
).
32.
L.
Wu
,
Z.
Jiao
,
Y.
Song
,
W.
Ren
,
S.
Niu
, and
Z.
Han
, “
Water-trapping and drag-reduction effects of fish Ctenopharyngodon idellus scales and their simulations
,”
Sci. China Technol. Sci.
60
(
7
),
1111
1117
(
2017
).
33.
L.
Wu
,
Z.
Jiao
,
Y.
Song
,
C.
Liu
,
H.
Wang
, and
Y.
Yan
, “
Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales
,”
Sci. Rep.
8
(
1
),
12186
(
2018
).
34.
Z.
Li
,
Y.
Zuo
,
H.
Lu
,
L.
He
, and
B.
Meng
, “
Numerical study on the influence of top and valley shape of the transverse groove on the drag reduction rate
,”
J. Theor. Appl. Mech.
61
(
4
)
741
754
(
2023
).
35.
G. D.
Bixler
and
B.
Bhushan
, “
Fluid drag reduction with shark-skin riblet inspired microstructured surfaces
,”
Adv. Funct. Mater.
23
(
36
),
4507
4528
(
2013
).
36.
X.
Cui
,
D.
Chen
, and
H.
Chen
, “
Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling
,”
ACS Omega
8
(
9
),
8569
8581
(
2023
).
37.
Y.
Peet
,
P.
Sagaut
, and
Y.
Charron
, “
Pressure loss reduction in hydrogen pipelines by surface restructuring
,”
Int. J. Hydrogen Energy
34
(
21
),
8964
8973
(
2009
).
38.
H.
Chen
,
F.
Rao
,
X.
Shang
,
D.
Zhang
, and
I.
Hagiwara
, “
Biomimetic drag reduction study on herringbone riblets of bird feather
,”
J. Bionic Eng.
10
(
3
),
341
349
(
2013
).
39.
T. D.
Mai
,
S.
Kim
,
K.
Chang
,
S.-W.
Lee
,
M.
Kim
, and
J.
Ryu
, “
Numerical and theoretical analysis of the influences of surface treatment on drag reduction in submarine
,”
Ocean Eng.
266
,
113068
(
2022
).
40.
S.
Emeis
, “
Surface pressure distribution and pressure drag on mountains
,”
Meteorl. Atmos. Phys.
43
(
1–4
),
173
185
(
1990
).
41.
S.
Emeis
, “
Pressure drag and effective roughness length with neutral stratification
,”
Boundary-Layer Meteorol.
39
(
4
),
379
401
(
1987
).
42.
P.
Tirandazi
and
C. H.
Hidrovo
, “
Study of drag reduction using periodic spanwise grooves on incompressible viscous laminar flows
,”
Phys. Rev. Fluids
5
(
6
),
064102
(
2020
).
43.
P. R.
Spalart
, “
Strategies for turbulence modelling and simulations
,”
Int. J. Heat Fluid Flow
21
(
3
),
252
263
(
2000
).
44.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
45.
H.
Qiu
,
K.
Chauhan
, and
C.
Lei
, “
A numerical study of drag reduction performance of simplified shell surface microstructures
,”
Ocean Eng.
217
,
107916
(
2020
).
46.
Z.
Wu
,
X.
Cheng
,
Y.
Yang
,
M.
Liu
, and
K.
Zhang
, “
Numerical study on flow characteristics of airfoil with bionic micro-grooves
,”
J. Braz. Soc. Mech. Sci. Eng.
44
(
11
),
505
(
2022
).
47.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
(
1
),
016327
(
2012
).
48.
B.
Dean
and
B.
Bhushan
, “
Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review
,”
Philos. Trans. R. Soc., A
368
(
1929
),
4775
4806
(
2010
).
49.
C.
Liu
,
H.
Meng
,
S.
Lu
,
A.
Li
,
C.
Xu
,
Y.
Sun
, and
G.
Wang
, “
Design of nonsmooth groove tire bioinspired by shark-skin riblet structure
,”
Appl. Bionics Biomech.
2022
,
6025943
.
50.
Z.
Li
,
L.
He
,
Y.
Zuo
, and
B.
Meng
, “
Analytic solution of optimal aspect ratio of bionic transverse V-groove for drag reduction based on vorticity kinetics
,”
Aerospace
9
(
12
),
749
(
2022
).
51.
S.
Zheng
,
X.
Liang
,
J.
Li
,
Y.
Liu
, and
J.
Tang
, “
Drag reduction using bionic groove surface for underwater vehicles
,”
Front. Bioeng. Biotechnol.
11
,
1223691
(
2023
).
52.
R.
Grüneberger
and
W.
Hage
, “
Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings
,”
Exp. Fluids
50
(
2
),
363
373
(
2011
).
53.
Z.
Li
,
L.
He
, and
Y.
Zheng
, “
Quasi-analytical solution of optimum and maximum depth of transverse V-groove for drag reduction at different Reynolds numbers
,”
Symmetry
14
(
2
),
342
(
2022
).
54.
Z.
Wu
,
S.
Li
,
M.
Liu
,
S.
Wang
,
H.
Yang
, and
X.
Liang
, “
Numerical research on the turbulent drag reduction mechanism of a transverse groove structure on an airfoil blade
,”
J. Eng. Appl. Comput. Fluid Mech.
13
(
1
),
1024
1035
(
2019
).
55.
B.
Wang
,
J.
Wang
, and
D.
Chen
, “
A prediction of drag reduction by entrapped gases in hydrophobic transverse grooves
,”
Sci. China Technol. Sci.
56
(
12
),
2973
2978
(
2013
).
56.
Y.
Wang
,
Y.
Wei
,
D.
Weng
, and
J.
Wang
, “
Aerodynamic drag reduction by the trapezoid spanwise groove inspired by pigeon feathers
,”
Energies
16
(
5
),
2379
(
2023
).
57.
A.
Brima
,
R.
Atmani
, and
B.
Achour
, “
Theoretical approach on the study of turbulent water flow over smooth and L-shaped riblets surfaces
,”
Int. J. Fluid Mech. Res.
35
(
2
),
161
171
(
2008
).
58.
L.
Qin
,
Y.
Wu
,
Z.
Ma
,
H.
Li
,
S.
Lu
,
Z.
Wang
,
J.
Liu
,
M.
Dong
, and
Y.
Zhang
, “
Fluorine-free and highly durable superhydrophobic textiles for antifouling and anti-icing applications
,”
ACS Appl. Polym. Mater.
5
(
8
),
6278
6287
(
2023
).
You do not currently have access to this content.