In this paper, a novel slot–groove hybrid casing treatment is designed and optimized to improve the stall margin of a low-speed axial compressor. A combination of the axial slot and circumferential groove casing treatments is utilized to increase the stall margin without incurring efficiency loss. The slot meridional profile is described with 2 B-spline curves. Circumferential grooves are parametrically described with groove height and width. An in-house optimization design platform is constructed based on the nondominated sorting genetic algorithm II and Kriging surrogate model. The optimization objectives are the stall margin and the peak efficiency of the compressor at the design rotating speed. To avoid the large number of unsteady simulations that are required to predict the stall margin, a stall margin improvement indicator is proposed based on the axial momentum budget analysis at the rotor tip region. The performance of the optimal slot–groove hybrid casing treatment design is tested and simulated. The experimental data show that the optimal slot–groove hybrid casing treatment improves the stall margin by 8.42% without generating efficiency loss. The flow details are captured by unsteady simulations and analyzed in depth. The application of the optimal casing treatment enhances the blade tip axial momentum and the interface between tip leakage flow and incoming main flow is pushed downstream. Consequently, the stability of the compressor is improved.

1.
C.
Koch
, “
Experimental evaluation of outer case blowing or bleeding of single stage axial flow compressor, part 6 final report
,”
Report No. NASA-CR-54592
(
NASA
,
1970
).
2.
E. E.
Bailey
and
C. H.
Voit
, “
Some observations of effects of porous casings on operating range of a single axial-flow compressor rotor
,”
Report No. NASA-TM-X-2120
(
NASA
,
1970
).
3.
R.
Oscarson
and
D.
Wright
, “Experimental
evaluation of a honeycomb rotor shroud configuration to improve the stall margin of a 0.5 hub-tip ratio single-stage compressor. Volume 1-Data and performance report
,”
Report No. NASA-CR-72808
(
NASA
,
1970
).
4.
W. M.
Osborn
,
G. W.
Lewis
, Jr.
, and
L. J.
Heidelberg
, “
Effect of several porous casing treatments on stall limit and on overall performance of an axial flow compressor rotor
,”
Report No. NASA-TN-D-6537
(
NASA
,
1971
).
5.
E. E.
Bailey
, “
Effect of grooved casing treatment on the flow range capability of a single-stage axial-flow compressor
,”
Report No. NASA-TM-X-2459
(
NASA
,
1972
).
6.
Z.
Liu
et al, “
Some observations on circumferentially grooved casing treatment
,”
J. Northwest. Polytech. Univ.
3
(
2
),
207
216
(
1985
).
7.
C.
Hah
, “
Toward optimum configuration of circumferential groove casing treatment in transonic compressor rotors
,” in
Fluids Engineering Division Summer Meeting
(ASME,
2011
), pp.
1823
1832
.
8.
D.
Prince
, Jr.
,
D.
Wisler
, and
D.
Hilvers
, “
A study of casing treatment stall margin improvement phenomena
,” in
ASME International Gas Turbine Conference and Products Show
(
ASME
,
1975
).
9.
D. C.
Urasek
,
G. W.
Lewis
, Jr.
, and
R. D.
Moore
, “
Effect of casing treatment on performance of an inlet stage for a transonic multistage compressor
,”
Report No. NASA-TM-X-3347
(
NASA
,
1976
).
10.
M.
Johnson
and
E.
Greitzer
, “
Effects of slotted hub and casing treatments on compressor endwall flow fields
,”
ASME. J. Turbomach.
109
(
3
),
380
387
(
1987
).
11.
X. S.
Wang
,
J. J.
Sun
,
P.
Song
, and
W. Z.
Chen
, “
Design optimization and flow analysis of discrete tip injection in a transonic compressor based on nonlinear harmonic method and endwall blockage attenuation
,”
Phys. Fluids
35
(
6
),
066103
(
2023
).
12.
S. L.
Ding
,
S. W.
Chen
,
S. H.
Hao
, and
S. T.
Wang
, “
Flow instability control of an ultra highly loaded transonic compressor rotor using self excited casing bleed
,”
Phys. Fluids
35
(
6
),
066134
(
2023
).
13.
A.
Shabbir
and
J. J.
Adamczyk
, “
Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors
,”
ASME. J. Turbomach.
127
(
4
),
708
717
(
2005
).
14.
X.
Lu
,
W.
Chu
,
J.
Zhu
, and
Y.
Wu
, “
Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor
,” in
Turbo Expo: Power for Land, Sea, and Air
(ASME,
2006
), Vol.
4241
, pp.
79
90
.
15.
Y.
Sakuma
,
T.
Watanabe
,
T.
Himeno
,
D.
Kato
,
T.
Murooka
, and
Y.
Shuto
, “
Numerical analysis of flow in a transonic compressor with a single circumferential casing groove: Influence of groove location and depth on flow instability
,”
ASME. J. Turbomach.
136
(
3
),
031017
(
2014
).
16.
T.
Houghton
and
I.
Day
, “
Enhancing the stability of subsonic compressors using casing grooves
,”
ASME. J. Turbomach.
133
(
2
),
021007
(
2011
).
17.
J.
Li
,
F.
Lin
,
S.
Wang
,
J.
Du
,
C.
Nie
, and
J.
Chen
, “
Extensive experimental study of circumferential single groove in an axial flow compressor
,” in
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2D: Turbomachinery, Düsseldorf, Germany, 16–20 June 2014
(
ASME
,
2014
).
18.
J.
Du
,
L.
Liu
,
X.
Nan
,
F.
Lin
,
J.
Chen
, and
C.
Nie
, “
The dynamics of Prestall process in an axial low-speed compressor with single circumferential casing groove
,” in
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6C: Turbomachinery, San Antonio, Texas, 3–7 June 2013
(
ASME
,
2013
).
19.
J.
Du
,
J.
Li
,
L.
Gao
,
F.
Lin
, and
J.
Chen
, “
The impact of casing groove location on stall margin and tip clearance flow in a low-speed axial compressor
,”
ASME. J. Turbomach.
138
(
12
),
121007
(
2016
).
20.
M.
Rolfes
,
M.
Lange
,
K.
Vogeler
, and
R.
Mailach
, “
Experimental and numerical investigation of a circumferential groove casing treatment in a low-speed axial research compressor at different tip clearances
,”
ASME. J. Turbomach.
139
(
12
),
121009
(
2017
).
21.
J.
Du
,
L.
Gao
,
J.
Li
,
F.
Lin
, and
J.
Chen
, “
Initial selection of groove location combination for multi-groove casing treatments
,”
J. Mech. Sci. Technol.
30
(
2
),
697
704
(
2016
).
22.
Z.
Liu
,
C.
Zhang
,
J.
Shi
,
Z.
Wang
, and
J.
Huang
, “
A study on effects of axial positions of skewed slots casing treatment on compressor performance
,”
J. Eng. Thermophys.
8
,
52
54
(
1987
).
23.
Y.
Li
,
J.
Li
,
J.
Du
,
Y.
Liu
,
M.
Zhang
, and
H.
Zhang
, “
Optimized casing treatment to improve stall margin under circumferential pressure distortion in a high-speed axial flow fan
,” in
Turbo Expo: Power for Land, Sea, and Air
(
ASME
,
2023
), Vol.
87080
.
24.
M.
Zhang
,
J.
Hu
,
Y.
Fang
,
X.
Dong
,
T.
Pan
,
D.
Sun
, and
X.
Sun
, “
Stability analysis of axial compressors with wire mesh casing treatment
,”
Phys. Fluids
35
(
11
),
114107
(
2023
).
25.
J.
Qiu
,
J.
Du
,
Z.
Fan
,
M.
Zhang
,
C.
Yang
, and
M.
Zhao
, “
Effects of rotating inlet distortion on the stall mechanism of an axial flow compressor
,”
Phys. Fluids
35
(
11
),
114105
(
2023
).
26.
H.
Zhang
,
H.
Wang
,
F.
Dong
,
F.
Jing
, and
W.
Chu
, “
Mechanism study on the effect of self-circulating casing treatment with different circumferential coverage ratios on the axial compressor stability
,”
Phys. Fluids
35
(
5
),
056112
(
2023
).
27.
I.
Wilke
,
H. P.
Kau
, and
G.
Brignole
, “
Numerically aided design of a high-efficient casing treatment for a transonic compressor
,” in
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 6: Turbo Expo 2005, Parts A and B, Reno, Nevada, 6–9 June 2005
(
ASME
,
2005
), pp.
353
364
.
28.
M.
Hembera
,
H. P.
Kau
, and
E.
Johann
, “
Simulation of casing treatments of a transonic compressor stage
,”
Int. J. Rotating Mach.
2008
,
657202
.
29.
G.
Goinis
,
C.
Voß
, and
M.
Aulich
, “
Automated optimization of an axial-slot type casing treatment for a transonic compressor
,” in
Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6B: Turbomachinery, San Antonio, Texas, 3–7 June 2013
(
ASME
,
2013
).
30.
D.
Ba
,
Q.
Zhang
,
J.
Du
,
Z.
Li
,
H.
Zhang
, and
C.
Nie
, “
Design optimization of axial slot casing treatment in a highly-loaded mixed-flow compressor
,”
Aerosp. Sci. Technol.
107
,
106262
(
2020
).
31.
J.
Du
,
F.
Li
,
J.
Li
,
N.
Ma
,
F.
Lin
, and
J.
Chen
, “
A study of performance and flow mechanism of a slot-groove hybrid casing treatment in a low-speed compressor
,” in
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 2C: Turbomachinery, Montreal, Quebec, Canada, 15–19 June 2015
(
ASME
,
2015
).
32.
J.
Li
,
J.
Du
,
F.
Li
,
Q.
Zhang
, and
H.
Zhang
, “
Stability enhancement using a new hybrid casing treatment in an axial flow compressor
,”
Aerosp. Sci. Technol.
85
,
305
319
(
2019
).
33.
G.
Zhu
and
B.
Yang
, “
Optimization of slots-groove coupled casing treatment for an axial transonic compressor
,”
J. Turbomach.
142
(
8
),
081003
(
2020
).
34.
P. J.
Roache
,
Verification and Validation in Computational Science and Engineering
(
Hermosa
,
Albuquerque, NM
,
1998
).
35.
L.
Martinelli
,
A.
Jameson
, and
F.
Grasso
, “
A multigrid method for the Navier Stokes equations
,” AIAA Paper No. 1986-208,
1986
.
36.
X.
Nan
,
N.
Ma
,
J.
Li
,
L.
Liu
, and
F.
Lin
, “
Evaluation of the effectiveness of typical casing treatments for a low-speed compressor by an integral method
,”
Aerosp. Sci. Technol.
52
,
234
242
(
2016
).
37.
J.
Benesty
,
J.
Chen
,
Y.
Huang
, and
I.
Cohen
, “
Pearson correlation coefficient
,”
Noise Reduction in Speech Processing
(
Springer
,
2009
).
38.
K.
Deb
,
A.
Pratap
,
S.
Agarwal
, and
T.
Meyarivan
, “
A fast and elitist multiobjective genetic algorithm: NSGA-II
,”
IEEE Trans. Evol. Computat.
6
(
2
),
182
197
(
2002
).
39.
T.
Simpson
,
F.
Mistree
,
J.
Korte
, and
T.
Mauery
, “
Comparison of response surface and Kriging models for multidisciplinary design optimization
,” AIAA Paper No. AIAA 1998-4755,
1998
.
40.
M. D.
McKay
,
R. J.
Beckman
, and
W. J.
Conover
, “
A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
,”
Technometrics
42
(
1
),
55
61
(
2000
).
You do not currently have access to this content.