Flow modeling based on physics-informed neural networks (PINNs) is emerging as a potential artificial intelligence (AI) technique for solving fluid dynamics problems. However, conventional PINNs encounter inherent limitations when simulating incompressible fluids, such as difficulties in selecting the sampling points, balancing the loss items, and optimizing the hyperparameters. These limitations often lead to non-convergence of PINNs. To overcome these issues, an improved and generic PINN for fluid dynamic analysis is proposed. This approach incorporates three key improvements: residual-based adaptive sampling, which automatically samples points in areas with larger residuals; adaptive loss weights, which balance the loss terms effectively; and utilization of the differential evolution optimization algorithm. Then, three case studies at low Reynolds number, Kovasznay flow, vortex shedding past a cylinder, and Beltrami flow are employed to validate the improved PINNs. The contribution of each improvement to the final simulation results is investigated and quantified. The simulation results demonstrate good agreement with both analytical solutions and benchmarked computational fluid dynamics (CFD) calculation results, showcasing the efficiency and validity of the improved PINNs. These PINNs have the potential to reduce the reliance on CFD simulations for solving fluid dynamics problems.

1.
M. R.
Pendar
,
S.
Cândido
, and
J. C.
Páscoa
, “
Optimization of painting efficiency applying unique techniques of high-voltage conductors and nitrotherm spray: Developing deep learning models using computational fluid dynamics dataset
,”
Phys. Fluids
35
(
7
),
075119
(
2023
).
2.
K.
Xue
,
Z.
Zhang
,
S.
Hao
,
P.
Luo
, and
Y.
Wang
, “
On the onset of nonlinear fluid flow transition in rock fracture network: Theoretical and computational fluid dynamic investigation
,”
Phys. Fluids
34
(
12
),
125114
(
2022
).
3.
R.
Zamolo
and
L.
Parussini
, “
Analysis of geometric uncertainties in CFD problems solved by RBF-FD meshless method
,”
J. Comput. Phys.
421, 109730 (
2020
).
4.
M.
Kalli
,
P.
Pico
,
L.
Chagot
,
L.
Kahouadji
,
S.
Shin
,
J.
Chergui
,
D.
Juric
,
O. K.
Matar
, and
P.
Angeli
, “
Effect of surfactants during drop formation in a microfluidic channel: A combined experimental and computational fluid dynamics approach
,”
J. Fluid Mech.
961
,
A15
(
2023
).
5.
Y.
Jiang
,
Y.
Guo
,
Z.
Yu
,
X.
Hua
,
J.
Lin
,
C. R.
Wassgren
, and
J. S.
Curtis
, “
Discrete element method–computational fluid dynamics analyses of flexible fibre fluidization
,”
J. Fluid Mech.
910
,
A8
(
2021
).
6.
G.
Dang
,
S.
Liu
,
T.
Guo
,
J.
Duan
, and
X.
Li
, “
Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: An open-source high accuracy accelerated computational fluid dynamic software
,”
Phys. Fluids
34
(
12
),
126106
(
2022
).
7.
D.
Kochkov
,
J. A.
Smith
,
A.
Alieva
,
Q.
Wang
,
M. P.
Brenner
, and
S.
Hoyer
, “
Machine learning–accelerated computational fluid dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
118
(
21
),
e2101784118
(
2021
).
8.
K.
Fouladi
,
A. P.
Wemhoff
,
L.
Silva-Llanca
,
K.
Abbasi
, and
A.
Ortega
, “
Optimization of data center cooling efficiency using reduced order flow modeling within a flow network modeling approach
,”
Appl. Therm. Eng.
124
,
929
939
(
2017
).
9.
C. E.
Heaney
,
Z.
Wolffs
,
J. A.
Tómasson
,
L.
Kahouadji
,
P.
Salinas
,
A.
Nicolle
,
I. M.
Navon
,
O. K.
Matar
,
N.
Srinil
, and
C. C.
Pain
, “
An AI-based non-intrusive reduced-order model for extended domains applied to multiphase flow in pipes
,”
Phys. Fluids
34
(
5
),
055111
(
2022
).
10.
K.
Lee
and
K. T.
Carlberg
, “
Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders
,”
J. Comput. Phys.
404
,
108973
(
2020
).
11.
M. Z.
Yousif
,
L.
Yu
, and
H.
Lim
, “
Physics-guided deep learning for generating turbulent inflow conditions
,”
J. Fluid Mech.
936
,
A21
(
2022
).
12.
J. L.
Wu
,
H.
Xiao
, and
E.
Paterson
, “
Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework
,”
Phys. Rev. Fluids
3
(
7
),
074602
(
2018
).
13.
R.
Gupta
and
R.
Jaiman
, “
Three-dimensional deep learning-based reduced order model for unsteady flow dynamics with variable Reynolds number
,”
Phys. Fluids
34
(
3
),
033612
(
2022
).
14.
G.
Novati
,
H. L.
de Laroussilhe
, and
P.
Koumoutsakos
, “
Automating turbulence modelling by multi-agent reinforcement learning
,”
Nat. Mach. Intell.
3
(
1
),
87
96
(
2021
).
15.
B.
Li
,
Z.
Yang
,
X.
Zhang
,
G.
He
,
B. Q.
Deng
, and
L.
Shen
, “
Using machine learning to detect the turbulent region in flow past a circular cylinder
,”
J. Fluid Mech.
905
,
A10
(
2020
).
16.
E. T.
Brantson
,
M.
Abdulkadir
,
P. H.
Akwensi
,
H.
Osei
,
T. F.
Appiah
,
K. R.
Assie
, and
S.
Samuel
, “
Gas-liquid vertical pipe flow patterns convolutional neural network classification using experimental advanced wire mesh sensor images
,”
J. Nat. Gas Sci. Eng.
99
,
104406
(
2022
).
17.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
18.
S.
Cai
,
Z.
Wang
,
F.
Fuest
,
Y. J.
Jeon
,
C.
Gray
, and
G. E.
Karniadakis
, “
Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
,”
J. Fluid Mech.
915
,
A102
(
2021
).
19.
X.
Jin
,
S.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier–Stokes flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2021
).
20.
H.
Eivazi
,
M.
Tahani
,
P.
Schlatter
, and
R.
Vinuesa
, “
Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations
,”
Phys. Fluids
34
(
7
),
075117
(
2022
).
21.
W.
Ji
,
W.
Qiu
,
Z.
Shi
,
S.
Pan
, and
S.
Deng
, “
Stiff-pinn: Physics-informed neural network for stiff chemical kinetics
,”
J. Phys. Chem. A
125
(
36
),
8098
8106
(
2021
).
22.
R.
Laubscher
, “
Simulation of multi-species flow and heat transfer using physics-informed neural networks
,”
Phys. Fluids
33
(
8
),
087101
(
2021
).
23.
M.
Aliakbari
,
M.
Mahmoudi
,
P.
Vadasz
, and
A.
Arzani
, “
Predicting high-fidelity multiphysics data from low-fidelity fluid flow and transport solvers using physics-informed neural networks
,”
Int. J. Heat Fluid Flow
96
,
109002
(
2022
).
24.
Y.
Liu
,
X.
Li
, and
Z.
Liu
, “
An improved physics-informed neural network based on a new adaptive gradient descent algorithm for solving partial differential equations of nonlinear systems
,” arXiv: 2192513/v1 (
2022
).
25.
C.
Cheng
and
G. T.
Zhang
, “
Deep learning method based on physics informed neural network with Resnet block for solving fluid flow problems
,”
Water
13
(
4
),
423
(
2021
).
26.
J. C.
Wong
,
C.
Ooi
,
P. H.
Chiu
, and
M. H.
Dao
, “
Improved surrogate modeling of fluid dynamics with physics-informed neural networks
,” arXiv:2105.01838 (
2021
).
27.
T.
Zhang
,
B.
Dey
,
P.
Kakkar
,
A.
Dasgupta
, and
A.
Chakraborty
, “
Frequency-compensated pinns for fluid-dynamic design problems
,” arXiv:2011.01456 (
2020
).
28.
J.
Yu
,
L.
Lu
,
X.
Meng
, and
G. E.
Karniadakis
, “
Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems
,”
Comput. Methods Appl. Mech. Eng.
393
,
114823
(
2022
).
29.
C.
Wu
,
M.
Zhu
,
Q.
Tan
,
Y.
Kartha
, and
L.
Lu
, “
A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks
,”
Comput. Methods Appl. Mech. Eng.
403
,
115671
(
2023
).
30.
L.
Liebel
and
M.
Körner
, “
Auxiliary tasks in multi-task learning
,” (
2018
).
31.
Z.
Xiang
,
W.
Peng
,
X.
Liu
, and
W.
Yao
, “
Self-adaptive loss balanced physics-informed neural networks
,”
Neurocomputing
496
,
11
34
(
2022
).
32.
R.
Storn
and
K.
Price
, “
Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
,”
J. Global Optim.
11
(
4
),
341
359
(
1997
).
33.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
, et al, “
Pytorch: An imperative style, high-performance deep learning library
,” in
Proceedings of 33rd Conference on Neural Information Processing Systems
(
ACM Digital Library
,
2019
), pp.
8026
8037
.
34.
L. I. G.
Kovasznay
, “
Laminar flow behind a two-dimensional grid
,”
Math. Proc. Cambridge Philos. Soc.
44
(
1
),
58
62
(
1948
).
35.
C. R.
Ethier
and
D. A.
Steinman
, “
Exact fully 3D Navier–Stokes solutions for benchmarking
,”
Int. J. Numer. Methods Fluids
19
(
5
),
369
375
(
1994
).
You do not currently have access to this content.