Offshore nuclear power plants are characterized by a potential oscillatory motion depending on ocean waves. Investigating the local flow behavior in a system undergoing oscillating motion is necessary. In particular, because the local void fraction near the heating element surface significantly affects the nucleating boiling heat transfer and critical heat flux, understanding the dynamic behavior of the local void fraction is very important. Therefore, in this study, as an essential first step in predicting boiling heat transfer and departure from nucleate boiling in offshore nuclear reactors, the dynamic behavior of air–water bubbly flows has been experimentally and numerically investigated in a tube under oscillatory rolling conditions. An optical fiber Doppler probe was used to measure the local bubble parameters. The effects of the rolling period on the void fraction distributions, bubble sizes, and bubble velocities were insignificant. However, the rolling amplitude effect was significant. The void fraction was the highest at the downward-facing wall when the tube was at its maximum tilt. Moreover, the local water velocity became the highest when the tube returned to near vertical because of the combined effect of gravity and Euler force. These findings provide insights into understanding the characteristics of bubbly flow in a rolling tube.

1.
J.
Buongiorno
,
J.
Jurewicz
,
M.
Golay
, and
N.
Todreas
, “
The offshore floating nuclear plant concept
,”
Nucl. Technol.
194
(
1
),
1
14
(
2016
).
2.
K.
Lee
,
K.-H.
Lee
,
J. I.
Lee
,
Y. H.
Jeong
, and
P.-S.
Lee
, “
A new design concept for offshore nuclear power plants with enhanced safety features
,”
Nucl. Eng. Des.
254
,
129
(
2013
).
3.
K.
Shirvan
,
R.
Ballinger
,
J.
Buongiorno
,
C.
Forsberg
,
M.
Kazimi
, and
N.
Todreas
, “
Technology selection for offshore underwater small modular reactors
,”
Nucl. Eng. Technol.
48
,
1303
(
2016
).
4.
A.-M.
Zhang
,
S.-M.
Li
,
P.
Cui
,
S.
Li
, and
Y.-L.
Liu
, “
A unified theory for bubble dynamics
,”
Phys. Fluids
35
,
033323
(
2023
).
5.
X.
Zhang
,
J.
Wang
, and
D.
Wan
, “
Euler–Lagrange study of bubble breakup and coalescence in a turbulent boundary layer for bubble drag reduction
,”
Phys. Fluids
33
,
037105
(
2021
).
6.
A. M. R.
Al-Gaheeshi
,
F. L.
Rashid
, and
H. I.
Mohammed
, “
Dynamics of single bubble ascension in stagnant liquid: An investigation into multiphase flow effects on hydrodynamic characteristics using computational simulation
,”
Phys. Fluids
35
,
123303
(
2023
).
7.
T.
Onishi
,
Y.
Peng
,
H.
Ji
, and
G.
Peng
, “
Numerical simulations of cavitating water jet by an improved cavitation model of compressible mixture flow with an emphasis on phase change effects
,”
Phys. Fluids
35
,
073333
(
2023
).
8.
M.
Colombo
and
M.
Fairweather
, “
Multiphase turbulence in bubbly flows: RANS simulations
,”
Int. J. Multiphase Flow
77
,
222
(
2015
).
9.
M.
Colombo
and
M.
Fairweather
, “
Accuracy of Eulerian–Eulerian, two-fluid CFD boiling models of subcooled boiling flows
,”
Int. J. Heat Mass Transfer
103
,
28
(
2016
).
10.
B.
Yan
, “
Review of the nuclear reactor thermal hydraulic research in ocean motions
,”
Nucl. Eng. Des.
313
,
370
(
2017
).
11.
B.
Yan
and
L.
Yu
, “
The development and validation of a thermal hydraulic code in rolling motion
,”
Ann. Nucl. Energy
38
,
1728
(
2011
).
12.
G.
Mesina
,
D. L.
Aumiller
,
F. X.
Buschman
, and
M. R.
Kyle
, “
Modeling moving systems with RELAP5-3D
,”
Nucl. Sci. Eng.
182
,
83
(
2016
).
13.
H.-K.
Beom
,
G.-W.
Kim
,
G.-C.
Park
, and
H. K.
Cho
, “
Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition
,”
Nucl. Eng. Technol.
51
,
1231
(
2019
).
14.
B. J.
Kim
and
S. W.
Lee
, “
Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis
,”
Nucl. Eng. Technol.
54
,
888
(
2022
).
15.
H.
Seo
,
M. H.
Choi
,
S. W.
Park
,
G. W.
Kim
,
H. K.
Cho
, and
B. D.
Chung
, “
Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS
,”
Nucl. Eng. Technol.
54
,
4373
(
2022
).
16.
H.
Gong
,
X.
Zhang
,
N.
Gui
,
Y.
Huang
,
X.
Yang
, and
S.
Jiang
, “
Study on the density wave instability in natural circulation system under rolling conditions
,”
Int. J. Energy Res.
2023
,
3249806
.
17.
R.
Li
,
M.
Peng
,
G.
Xia
, and
L.
Sun
, “
The natural circulation flow characteristic of the core in floating nuclear power plant in rolling motion
,”
Ann. Nucl. Energy
142
,
107385
(
2020
).
18.
Y.
Xu
,
W.
Cai
,
Y.
Xue
,
H.
Qi
, and
Q.
Li
, “
Experimental study on thermal performances of flat-plate pulsating heat pipes under static and swing conditions
,”
Appl. Therm. Eng.
212
,
118616
(
2022
).
19.
G.-W.
Kim
,
J.-S.
Yoo
,
C. W.
Lee
,
H.
Hong
,
G.-C.
Park
, and
H. K.
Cho
, “
Critical heat flux characteristics of flow boiling on a heater rod under inclined and rolling conditions
,”
Int. J. Heat Mass Transfer
189
,
122670
(
2022
).
20.
C. W.
Lee
,
J.-S.
Yoo
,
H.
Hong
,
H.
Ko
,
J. H.
Ku
,
G.-W.
Kim
,
G.-C.
Park
, and
H. K.
Cho
, “
Experimental investigation of helical fin and inclination effect on critical heat flux
,”
Int. J. Heat Mass Transfer
215
,
124482
(
2023
).
21.
G.-W.
Kim
,
J.-S.
Yoo
,
C. W.
Lee
,
H.
Hong
,
G.-C.
Park
, and
H. K.
Cho
, “
Critical heat flux correlations for tube and annulus geometries under inclination and rolling conditions
,”
Appl. Therm. Eng.
225
,
120131
(
2023
).
22.
J.-S.
Yoo
,
C. W.
Lee
,
H.
Hong
,
H.
Ko
,
J. H.
Ku
,
G.-W.
Kim
,
G.-C.
Park
, and
H. K.
Cho
, “
Experimental study on flow boiling CHF in annulus channel under heaving conditions using simulant fluid R134a targeting nuclear reactor applications
,”
Appl. Therm. Eng.
236
,
121906
(
2024
).
23.
Z.
Lai
,
W.
Tian
,
C.
Chen
,
M.
Wang
,
K.
Zhang
,
S.
Qiu
, and
G.
Su
, “
Experimental study on thermal hydraulic characteristics of natural circulation loop under motion condition
,”
Appl. Therm. Eng.
207
,
118122
(
2022
).
24.
Y.
Li
,
W.
Li
,
L.
Wan
,
Y.
Xi
, and
N.
Wang
, “
Numerical simulation of boiling two-phase flow in the subchannel under static state and rolling motion
,”
Int. J. Heat Mass Transfer
163
,
120416
(
2020
).
25.
O.
Ejtehadi
,
A.
Sadeghi
, and
B. J.
Kim
, “
Numerical analysis of nucleate boiling in rolling rod bundle with tilted axis using two-fluid modeling approach
,”
Int. J. Heat Mass Transfer
201
,
123612
(
2023
).
26.
J.
Peng
,
D.
Chen
,
J.
Xu
,
L.
Hu
, and
H.
Liu
, “
CFD simulation focusing on void distribution of subcooled flow boiling in circular tube under rolling condition
,”
Int. J. Heat Mass Transfer
156
,
119790
(
2020
).
27.
J.-H.
Zheng
,
M.-A.
Xue
,
P.
Dou
, and
Y.-M.
He
, “
A review on liquid sloshing hydrodynamics
,”
J. Hydrodyn.
33
,
1089
(
2021
).
28.
S.
Wang
,
T.-J.
Xu
,
K.-M.
Shen
,
B.
Wang
,
G.-H.
Dong
, and
T.-Y.
Wang
, “
Numerical simulation of the interaction between nonlinear sloshing flow and side-mounted perforated baffles
,”
Phys. Fluids
35
,
083607
(
2023
).
29.
Y.
Zhao
and
H.-C.
Chen
, “
Numerical simulation of 3D sloshing flow in partially filled LNG tank using a coupled level-set and volume-of-fluid method
,”
Ocean Eng.
104
,
10
(
2015
).
30.
G.
Hong
,
X.
Yan
,
Y.-H.
Yang
,
T.-Z.
Xie
, and
J-J.
Xu
, “
Bubble departure size in forced convective subcooled boiling flow under static and heaving conditions
,”
Nucl. Eng. Des.
247
,
202
(
2012
).
31.
D.
Tian
,
C.
Yan
,
L.
Sun
, and
G.
Liu
, “
Local interfacial parameter distribution for two-phase flow under rolling conditions using a four-sensor optical probe
,”
Ann. Nucl. Energy
66
,
124
(
2014
).
32.
A2 Photonic Sensors
,
Measurement System and Software for Particle and Bubbly Flow Analysis
(
A2 Photonic Sensors
,
France
,
2019
).
33.
Ansys Fluent Inc.
,
ANSYS Fluent 2021 R1 User's Guide and Theory Manual
(
Ansys Fluent Inc
.,
2021
).
34.
B. J.
Kim
,
M. H.
Kim
,
S. W.
Lee
, and
K. D.
Kim
, “
Two-fluid equations for two-phase flows in moving systems
,”
Nucl. Eng. Technol.
51
,
1504
(
2019
).
35.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
,
1598
(
1994
).
36.
Y.
Sato
and
K.
Sekoguchi
, “
Liquid velocity distribution in two-phase bubble flow
,”
Int. J. Multiphase Flow
2
,
79
(
1975
).
37.
C.
Simonin
and
P.
Viollet
, “
Predictions of an oxygen droplet pulverization in a compressible subsonic coflowing hydrogen flow
,”
Numer. Methods Multiphase Flows
91
,
65
(
1990
).
38.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Dover Publications
,
2005
).
39.
A.
Tomiyama
, “
Struggle with computational bubble dynamics
,”
Multiphase Sci. Technol.
10
,
369
(
1998
).
40.
S.
Antal
,
R.
Lahey
, Jr.
, and
J.
Flaherty
, “
Analysis of phase distribution in fully developed laminar bubbly two-phase flow
,”
Int. J. Multiphase Flow
17
,
635
(
1991
).
41.
A. D.
Burns
,
T.
Frank
,
I.
Hamill
, and
J.-M.
Shi
,
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
(
ICMF
,
Japan
,
2004
).
You do not currently have access to this content.