The effects of ventilation strategies on mitigating airborne virus transmission in a generic indoor space representative of a lobby area or information desk found in a hotel, company, or cruise ship are presented. Multiphase computational fluid dynamics simulations are employed in conjunction with evaporation modeling. Four different ventilation flow rates are examined based on the most updated post-COVID-19 pandemic standards from health organizations and recent findings from research studies. Three air changes per hour provide the best option for minimizing droplet spreading at reasonable energy efficiency. Thus, a higher ventilation rate is not the best solution to avoid spreading airborne diseases. Simultaneous coughing of all occupants revealed that contagious droplets could be trapped in regions of low airflow and on furniture, significantly prolonging their evaporation time. Multiphase flow simulations can help define ventilation standards to reduce droplet spreading and mitigate virus transmission while maintaining adequate ventilation with lower energy consumption. The present work significantly impacts how heat, air-conditioning, and ventilation systems are designed and implemented.

1.
Y.
Yan
,
X.
Li
,
X.
Fang
,
P.
Yan
, and
J.
Tu
, “
Transmission of COVID-19 virus by cough-induced particles in an airliner cabin section
,”
Eng. Appl. Comput. Fluid Mech.
15
,
934
950
(
2021
).
2.
W.
Wang
,
F.
Wang
,
D.
Lai
, and
Q.
Chen
, “
Evaluation of SARS-COV-2 transmission and infection in airliner cabins
,”
Indoor Air
32
,
e12979
(
2022
).
3.
F.
Wang
,
T.
Zhang
,
R.
You
, and
Q.
Chen
, “
Evaluation of infection probability of Covid-19 in different types of airliner cabins
,”
Build Environ.
234
,
110159
(
2023
).
4.
T.
Dbouk
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
5.
T.
Dbouk
and
D.
Drikakis
, “
On airborne virus transmission in elevators and confined spaces
,”
Phys. Fluids
33
,
011905
(
2021
).
6.
S.
Bushwick
,
T.
Lewis
, and
A.
Montañez
,
Evaluating COVID Risk on Planes, Trains and Automobiles
(
Scientific American
,
2020
).
7.
T.
Dbouk
and
D.
Drikakis
, “
On respiratory droplets and face masks
,”
Phys. Fluids
32
,
063303
(
2020
).
8.
WHO
(
2021
). “
Roadmap to improve and ensure good indoor ventilation in the context of COVID-19
,”
World Health Organization
. https://www.who.int/publications/i/item/9789240021280.
9.
REHVA
(
2021
). “
COVID-19 guidance 4.1, how to operate HVAC and other building service systems to prevent the spread of the coronavirus (SARS-CoV-2) disease (COVID-19) in workplaces
,”
Federation of European Heating, Ventilation and Air Conditioning Associations
. https://www.rehva.eu/activities/covid-19-guidance/rehva-covid-19-guidance.
10.
ASHRAE
(
2023
). “
ANSI/ASHRAE standard 241–2023, control of infectious aerosols
”, see https://www.ashrae.org/technical-resources/bookstore/ashrae-standard-241-control-of-infectious-aerosols.
11.
CDC
(
2023
). “
COVID-19 ventilation in buildings 2023
,”
The Centers for Disease Control and Prevention
. https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html.
12.
ASHRAE
(
2019
). “
ANSI/ASHRAE standard 62.1–2019, ventilation and acceptable indoor air quality
”, see https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.1_2019
13.
Y.
Li
,
P.
Cheng
, and
W.
Jia
, “
Poor ventilation worsens short-range airborne transmission of respiratory infection
,”
Indoor Air
32
,
e12946
(
2022
).
14.
FPS
(
2022
). “
Legal framework regarding indoor air quality
,”
Federal public service - Public Health
. https://www.health.belgium.be/en/closer-legal-framework-indoor-air-quality.
15.
X.
Xie
,
Y.
Li
,
T.
Zhang
, and
H.
Fang
, “
Bacterial survival in evaporating deposited droplets on a teflon-coated surface
,”
Appl. Microbiol. Biotechnol.
73
,
703
712
(
2006
).
16.
L.
Guo
,
M.
Wang
,
L.
Zhang
,
N.
Mao
,
C.
An
,
L.
Xu
, and
E.
Long
, “
Transmission risk of viruses in large mucosalivary droplets on the surface of objects: A time-based analysis
,”
Infect. Dis. Now
51
,
219
227
(
2021
).
17.
N.
van Doremalen
,
T.
Bushmaker
,
D. H.
Morris
,
M. G.
Holbrook
,
A.
Gamble
,
B. N.
Williamson
,
A.
Tamin
,
J. L.
Harcourt
,
N. J.
Thornburg
,
S. I.
Gerber
,
J. O.
Lloyd-Smith
,
E.
de Wit
, and
V. J.
Munster
, “
Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1
,”
N Engl. J. Med.
382
,
1564
1567
(
2020
).
18.
K.
Ritos
,
D.
Drikakis
, and
I.
Kokkinakis
, “
Virus spreading in cruiser cabin
,”
Phys. Fluids
35
,
103329
(
2023
).
19.
T.
Dbouk
and
D.
Drikakis
, “
Weather impact on airborne coronavirus survival
,”
Phys. Fluids
32
,
093312
(
2020
).
20.
R.
Dhand
and
J.
Li
, “
Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-COV-2
,”
AJRCCM
202
,
651
659
(
2020
).
21.
X.
Zhao
,
S.
Liu
,
Y.
Yin
,
T. T.
Zhang
, and
Q.
Chen
, “
Airborne transmission of covid-19 virus in enclosed spaces: An overview of research methods
,”
Indoor Air
32
,
e13056
(
2022
).
22.
W.
van der Reijden
,
E.
Veerman
, and
A.
Nieuw Amerongen
, “
Shear rate dependent viscoelastic behavior of human glandular salivas
,”
Biorheology
30
,
141
152
(
1993
).
23.
U. S. EPA
(
2011
). “
EPA exposure factors handbook
,” Exposure factors handbook—Chapter 6: Inhalation rates. https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6.
24.
P.
Rosin
and
E.
Rammler
, “
The laws governing the fineness of powdered coal
,”
J. Inst. Fuel
7
,
29
36
(
1933
).
25.
W.
Weibull
, “
A statistical distribution function of wide applicability
,”
J. Appl. Mech.
18
,
293
297
(
1951
).
26.
Y.
Liu
,
Y.
Laiguang
,
Y.
Weinong
, and
L.
Feng
, “
On the size distribution of cloud droplets
,”
Atmos. Res.
35
,
201
216
(
1995
).
27.
X.
Xie
,
Y.
Li
,
H.
Sun
, and
L.
Liu
, “
Exhaled droplets due to talking and coughing
,”
J. R. Soc., Interface
6
,
703
714
(
2009
).
28.
S.
Zhu
,
S.
Kato
, and
J. H.
Yang
, “
Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment
,”
Build. Environ.
41
,
1691
1702
(
2006
).
29.
L. K.
Norvihoho
,
H.
Li
,
Z.-F.
Zhou
,
J.
Yin
,
S.-Y.
Chen
,
D.-Q.
Zhu
, and
B.
Chen
, “
Dispersion of expectorated cough droplets with seasonal influenza in an office
,”
Phys. Fluids
35
,
083302
(
2023
).
30.
M.
Zhao
,
C.
Zhou
,
T.
Chan
,
C.
Tu
,
Y.
Liu
, and
M.
Yu
, “
Assessment of COVID-19 aerosol transmission in a university campus food environment using a numerical method
,”
Geosci. Front.
13
,
101353
(
2022
).
31.
H.
Li
,
F. Y.
Leong
,
G.
Xu
,
Z.
Ge
,
C. W.
Kang
, and
K. H.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
32.
B. E.
Scharfman
,
A. H.
Techet
,
J. W. M.
Bush
, and
L.
Bourouiba
, “
Visualization of sneeze ejecta: Steps of fluid fragmentation leading to respiratory droplets
,”
Exp. Fluids
57
,
1
9
(
2016
).
33.
Siemens Digital Industries Software
, “
Simcenter STAR-CCM+, version 2210
” (
2022
).
34.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, Part I
,”
Chem. Eng. Prog.
48
,
141
146
(
1952
).
35.
W. E.
Ranz
and
W. R.
Marshall
, “
Evaporation from drops, Part II
,”
Chem. Eng. Prog.
48
,
173
180
(
1952
).
36.
M.
Auvinen
,
J.
Kuula
,
T.
Grönholm
,
M.
Sühring
, and
A.
Hellsten
, “
High-resolution large-eddy simulation of indoor turbulence and its effect on airborne transmission of respiratory pathogens-model validation and infection probability analysis
,”
Phys. Fluids
34
,
015124
(
2022
).
37.
H.
Calmet
,
K.
Inthavong
,
A.
Both
,
A.
Surapaneni
,
D.
Mira
,
B.
Egukitza
, and
G.
Houzeaux
, “
Large eddy simulation of cough jet dynamics, droplet transport, and inhalability over a ten minute exposure
,”
Phys. Fluids
33
,
125122
(
2021
).
38.
M.
Abuhegazy
,
K.
Talaat
,
O.
Anderoglu
, and
S. V.
Poroseva
, “
Numerical investigation of aerosol transport in a classroom with relevance to COVID-19
,”
Phys. Fluids
32
,
103311
(
2020
).
39.
M.-R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
40.
L.
Schiller
and
A.
Naumann
, “
Ueber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
VDI Z.
77
,
318
320
(
1933
).
41.
R.
Reid
,
J.
Prausnitz
, and
B.
Poling
,
The Properties of Gases and Liquids
, 4th ed. (
McGraw-Hil
,
1987
).
42.
P.
Katre
,
S.
Banerjee
,
S.
Balusamy
, and
K. C.
Sahu
, “
Fluid dynamics of respiratory droplets in the context of COVID-19: Airborne and surface borne transmissions
,”
Phys. Fluids
33
,
081302
(
2021
).
43.
S.-J.
Jang
,
S.-S.
Baek
,
J.-Y.
Kim
, and
S.-H.
Hwang
, “
Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives for touch screen panel
,”
J. Adhes. Sci. Technol.
28
,
1990
2000
(
2014
).
44.
Y.-L.
Hsieh
,
J.
Thompson
, and
A.
Miller
, “
Water wetting and retention of cotton assemblies as affected by alkaline and bleaching treatments
,”
Text. Res. J.
66
,
456
464
(
1996
).
45.
S.
Chandra
and
C.
Avedisian
, “
On the collision of a droplet with a solid surface
,”
Proc. R. Soc. London, Ser. A
432
,
13
41
(
1991
).
46.
R.
Bhardwaj
and
A.
Agrawal
, “
Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface
,”
Phys. Fluids
32
,
061704
(
2020
).
47.
M.
Koilybayeva
,
Z.
Shynykul
,
G.
Ustenova
,
K.
Waleron
,
J.
Jońca
,
K.
Mustafina
,
A.
Amirkhanova
,
Y.
Koloskova
,
R.
Bayaliyeva
,
T.
Akhayeva
,
M.
Alimzhanova
,
A.
Turgumbayeva
,
G.
Kurmangaliyeva
,
A.
Kantureyeva
,
D.
Batyrbayeva
, and
Z.
Alibayeva
, “
Gas chromatography–mass spectrometry profiling of volatile metabolites produced by some bacillus spp. and evaluation of their antibacterial and antibiotic activities
,”
Molecules
28
,
7556
(
2023
).
48.
SAGE
(
2020
). “
Transmission of SARS-CoV-2 and mitigating measures EMG-SAGE 4th June
,”
Scientific Advisory Group for Emergencies
.
49.
T.
Dbouk
,
F.
Roger
, and
D.
Drikakis
, “
Reducing indoor virus transmission using air purifiers
,”
Phys. Fluids
33
,
103301
(
2021
).
You do not currently have access to this content.