During the processing of elastomeric compounds under high flow rates, significant pressure drops (106–108 Pa) are encountered. Under such conditions, the viscosity of these compounds is significantly affected by pressure and viscous heating. Moreover, strong flow rates may cause these systems to slip at the wall, violating the classical no-slip boundary condition of fluid mechanics. To determine the slip velocity by the well-known Mooney method, the effects of pressure and viscous heating should be considered. In this work, an experimental methodology is developed to determine the slip velocity of styrene–butadiene compounds in capillary flow corrected for the effects of pressure and viscous heating. First, the temperature increase due to viscous heating is measured during the extrusion process and accounted for in correcting the experimental data to infer the slip velocity. Consequently, the corrected experimental data for the effects of pressure and viscous heating are used to calculate the slip velocity from the deviation of the linear viscoelastic behavior (deviation from the Cox–Merz rule). The Mooney method is also used to confirm the calculated slip velocity of the elastomeric compounds.

1.
M.
Mooney
, “
Explicit formulas for slip and fluidity
,”
J. Rheol.
2
,
210
222
(
1931
).
2.
S. G.
Hatzikiriakos
, “
Wall slip of molten polymers
,”
Prog. Polym. Sci.
37
,
624
643
(
2012
).
3.
Ph.
Mourniac
,
J. F.
Agassant
, and
B.
Verges
, “
Determination of the wall slip velocity in the flow of a SBR compound
,”
Rheol. Acta
31
,
565
574
(
1992
).
4.
A. Ya.
Malkin
,
A. V.
Baranov
, and
M. E.
Vickulenkova
, “
Experimental estimation of wall slip of filler rubbers compounds
,”
Rheol. Acta
32
,
150
155
(
1993
).
5.
J. M.
Lupton
and
R. W.
Regester
, “
Melt flow of polyethylene at high rates
,”
Polym. Eng. Sci.
5
,
235
242
(
1965
).
6.
A. V.
Ramamurthy
, “
Wall slip in viscous fluids and influence of materials of construction
,”
J. Rheol.
30
,
337
357
(
1986
).
7.
E. E.
Rosenbaum
and
S. G.
Hatzikiriakos
, “
Wall slip in the capillary flow of molten polymers subject to viscous heating
,”
AIChE J.
43
,
598
608
(
1997
).
8.
C. K.
Shih
,
Capillary Extrusion and Mold Flow Characteristics of an Incompatible Blend of Two Elastomers
(
Science and Technology of Polymer Processing, MIT Press
,
Cambridge
,
1979
), pp.
528
539
.
9.
W. P.
Cox
and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
(
1958
).
10.
H. H.
Winter
, “
Three views of viscoelasticity for Cox–Merz materials
,”
Rheol. Acta
48
,
241
(
2009
).
11.
H. H.
Winter
, “
Viscous dissipation in shear flows of molten polymers
,”
Adv. Heat Transfer
13
,
205
267
(
1977
).
12.
H. W.
Cox
and
C. W.
Macosko
, “
Viscous dissipation in die flows
,”
AIChE J.
20
,
785
795
(
1974
).
13.
S.
Soltani
and
F. A.
Sourki
, “
Effect of carbon black type on viscous heating, heat build-up, and relaxation behaviour of SBR compounds
,”
Iran. Polym. J.
14
,
745
751
(
2005
).
14.
P.
Heyer
,
C.
Wurm
, and
H.
Ehrentraut
,
Measurement and Visualization of Slip in Rubber Flow
(
AERC
,
Seville, ES
,
2022
).
15.
J. M.
Dealy
and
J.
Wang
,
Melt Rheology and Its Application in the Plastic Industry
, 2nd ed. (
Springer Science + Business Media
,
Dordrecht
,
2013
).
16.
M. M.
Denn
, “
Pressure drop-flow rate equation for adiabatic capillary flow with a pressure- and temperature-dependent viscosity
,”
Polym. Eng. Sci.
21
,
65
68
(
1981
).
17.
H.
Winter
and
M.
Mours
, “
The cyber infrastructure initiative for rheology
,”
Rheol. Acta
45
,
331
338
(
2006
).
18.
J. M.
Dealy
and
K. F.
Wissbrun
,
Melt Rheology and Its Role in Plastics Processing
(
Van Nostrand Reinhold
,
New York
,
1990
).
19.
J.
Mark
,
Physical Properties of Polymer Handbook
, 2nd ed. (
Spinger
,
New York
,
2007
).
20.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics
, 2nd ed. (
Wiley
,
New York
,
1987
).
21.
M.
Ansari
,
T.
Zisis
,
S. G.
Hatzikiriakos
, and
E.
Mitsoulis
, “
Capillary flow of low-density polyethylene
,”
Polym. Eng. Sci.
52
,
476
699
(
2012
).
22.
E.
Mitsoulis
,
S. S.
Abdali
, and
N. C.
Markatos
, “
Flow simulation of Herschel-Bulkley fluids through extrusion dies
,”
Can. J. Chem. Eng.
71
,
147
160
(
1993
).
23.
G.
Barakos
and
E.
Mitsoulis
, “
Non-isothermal viscoelasticity simulations of extrusion thought dies and prediction of the bending phenomenon
,”
J. Non-Newtonian Fluid Mech.
62
,
55
79
(
1996
).
24.
W.
Burchard
,
Branched Polymers II. Advances in Polymer Science
(
Springer
,
Berlin
,
1999
), Vol.
143
.
25.
J.
Brandrup
,
E. H.
Immergut
, and
E. A.
Grulke
,
Polymer Handbook
, 4th ed. (
John Wiley & Sons
,
New York
,
1999
).
26.
E.
van Ruymbeke
,
R.
Keunings
, and
C.
Bailly
, “
Prediction of linear viscoelastic properties mixtures of entangled star and linear polymers: Modified tube-based model and comparison with experimental results
,”
J. Non-Newtonian Fluid Mech.
128
,
7
22
(
2005
).
27.
L. J.
Fetters
,
D. J.
Lohse
,
S. T.
Milner
, and
W. W.
Graessley
, “
Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights
,”
Macromolecules
32
,
6847
(
1999
).
28.
S. G.
Hatzikiriakos
, “
Long chain branching and polydispersity effects on the rheological properties of polyethylenes
,”
Polym. Eng. Sci.
40
,
2279
2287
(
2000
).
29.
R.
Li
, “
Time-temperature superposition method for glass transition temperature of plastic materials
,”
Mat. Sci. Eng. A
278
,
36
45
(
2000
).
30.
C. K.
Georgantopoulos
,
M. K.
Esfahani
,
C.
Botha
,
M. A.
Pollard
,
I. F. C.
Naue
,
A.
Causa
,
R.
Kádár
, and
M.
Wilhelm
, “
Modeling the spatial characteristics of extrusion flow instabilities for styrene-butadiene rubbers: Investigation the influence of molecular weight distribution, molecular architecture and temperature
,”
Phys. Fluids
33
,
93108
(
2021
).
31.
C. K.
Georgantopoulos
,
M. K.
Esfahani
,
C.
Botha
,
I. F. C.
Naue
,
N.
Dingenouts
,
A.
Causa
,
R.
Kádár
, and
M.
Wilhelm
, “
Mechano-optical characterization of extrusion flow instabilities in styrene-butadiene rubbers: Investigation the influence of molecular properties and die geometry
,”
Macromol. Mater. Eng.
306
,
2000801
(
2021
).
You do not currently have access to this content.