This work investigates the effects of amino-functionalized graphene oxide (AFGO) suspensions on the rheological behavior of Carbopol® hydrogels at pHs 5, 7, and 9. The AFGO concentration and media pH were evaluated and related to the suspension's microstructure and rheology. Graphene oxide (GO) nanosheets were synthesized using the modified Hummers method and functionalized with triethylenetetramine via microwave-assisted reaction to produce AFGO. The nanosheets were characterized by different techniques, such as scanning electron microscopy (SEM), thermogravimetric analysis, Raman spectroscopy, and x-ray photoelectron spectroscopy. The suspensions were characterized by rheological tests through steady-state and dynamic flow, zeta potential, and cryo-SEM for microstructure analysis. All samples presented a viscoplastic behavior and were modeled by the Herschel–Bulkley equation. Concerning the base hydrogels, the sample prepared at pH 9 showed lower viscosity, yield stress, and elastic modulus. At all pHs, the increase in the nanosheet concentration promotes a drop in the yield stress, viscosity, storage, and loss moduli. The cryomicrographs showed the impact of pH on the base hydrogel structure. It was also possible to observe that increasing nanoadditive concentration affects the Carbopol microgel swelling and weakens the suspension microstructure.

1.
V.
Georgakilas
,
M.
Otyepka
,
A. B.
Bourlinos
,
V.
Chandra
,
N.
Kim
,
K. C.
Kemp
,
P.
Hobza
,
R.
Zboril
, and
K. S.
Kim
, “
Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications
,”
Chem. Rev.
112
,
6156
6214
(
2012
).
2.
A.
Khan
,
M.
Jawaid
,
B.
Neppolian
, and
A. M.
Asiri
,
Graphene Functionalization Strategies
(
Springer
,
2019
).
3.
M.
Song
and
D.
Cai
, “
Graphene functionalization: A review
,”
Polym.-Graphene Nanocompos.
26
,
1
51
(
2012
).
4.
G.-H.
Yang
,
D.-D.
Bao
,
H.
Liu
,
D.-Q.
Zhang
,
N.
Wang
, and
H.-T.
Li
, “
Functionalization of graphene and applications of the derivatives
,”
J. Inorg. Organomet. Polym.
27
,
1129
1141
(
2017
).
5.
T.
Kuila
,
S.
Bose
,
A. K.
Mishra
,
P.
Khanra
,
N. H.
Kim
, and
J. H.
Lee
, “
Chemical functionalization of graphene and its applications
,”
Prog. Mater. Sci.
57
,
1061
1105
(
2012
).
6.
S.
Liu
,
A. K.
Bastola
, and
L.
Li
, “
A 3D printable and mechanically robust hydrogel based on alginate and graphene oxide
,”
ACS Appl. Mater. Interfaces
9
,
41473
41481
(
2017
).
7.
S.
Ling
,
W.
Kang
,
S.
Tao
, and
C.
Zhang
, “
Highly concentrated graphene oxide ink for facile 3D printing of supercapacitors
,”
Nano Mater. Sci.
1
,
142
148
(
2019
).
8.
K.
Fu
,
Y.
Wang
,
C.
Yan
,
Y.
Yao
,
Y.
Chen
,
J.
Dai
,
S.
Lacey
,
Y.
Wang
,
J.
Wan
,
T.
Li
et al, “
Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries
,”
Adv. Mater.
28
,
2587
2594
(
2016
).
9.
E.
Garcia-Tunon
,
E.
Feilden
,
H.
Zheng
,
E.
D'Elia
,
A.
Leong
, and
E.
Saiz
, “
Graphene oxide: An all-in-one processing additive for 3D printing
,”
ACS Appl. Mater. Interfaces
9
,
32977
32989
(
2017
).
10.
J.
Zhong
,
G.-X.
Zhou
,
P.-G.
He
,
Z.-H.
Yang
, and
D.-C.
Jia
, “
3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide
,”
Carbon
117
,
421
426
(
2017
).
11.
D. V.
Kosynkin
,
G.
Ceriotti
,
K. C.
Wilson
,
J. R.
Lomeda
,
J. T.
Scorsone
,
A. D.
Patel
,
J. E.
Friedheim
, and
J. M.
Tour
, “
Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids
,”
ACS Appl. Mater. Interfaces
4
,
222
227
(
2012
).
12.
S.
Liu
,
Z.
Chen
,
Q.
Meng
,
H.
Zhou
,
C.
Li
, and
B.
Liu
, “
Effect of graphene and graphene oxide addition on lubricating and friction properties of drilling fluids
,”
Nanosci. Nanotechnol. Lett.
9
,
446
452
(
2017
).
13.
T. A.
Saleh
,
A.
Rana
, and
M. K.
Arfaj
, “
Graphene grafted with polyethyleneimine for enhanced shale inhibition in the water-based drilling fluid
,”
Environ. Nanotechnol., Monit. Manage.
14
,
100348
(
2020
).
14.
L.
Lei
,
Z.
Xia
,
L.
Zhang
,
Y.
Zhang
, and
L.
Zhong
, “
Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions
,”
Prog. Org. Coat.
97
,
19
27
(
2016
).
15.
P.
Haghdadeh
,
M.
Ghaffari
,
B.
Ramezanzadeh
,
G.
Bahlakeh
, and
M. R.
Saeb
, “
The role of functionalized graphene oxide on the mechanical and anti-corrosion properties of polyurethane coating
,”
J. Taiwan Inst. Chem. Eng.
86
,
199
212
(
2018
).
16.
S.
Pourhashem
,
A.
Rashidi
,
M. R.
Vaezi
, and
M. R.
Bagherzadeh
, “
Excellent corrosion protection performance of epoxy composite coatings filled with amino-silane functionalized graphene oxide
,”
Surf. Coat. Technol.
317
,
1
9
(
2017
).
17.
T.
Sun
,
H.
Zou
,
Y.
Zhou
,
R.
Li
,
M.
Liang
, and
Y.
Chen
, “
Achieving high-performance epoxy nanocomposites with trifunctional poly (oxypropylene) amines functionalized graphene oxide
,”
High Perform. Polym.
31
,
557
569
(
2019
).
18.
S.
Wang
,
J.
Wang
,
W.
Zhang
,
J.
Ji
,
Y.
Li
,
G.
Zhang
,
F.
Zhang
, and
X.
Fan
, “
Ethylenediamine modified graphene and its chemically responsive supramolecular hydrogels
,”
Ind. Eng. Chem. Res.
53
,
13205
13209
(
2014
).
19.
S. H.
Ryu
,
J.
Sin
, and
A.
Shanmugharaj
, “
Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites
,”
Eur. Polym. J.
52
,
88
97
(
2014
).
20.
T.
Missala
,
R.
Szewczyk
,
W.
Winiarski
,
M.
Hamela
,
M.
Kamiński
,
S.
Dąbrowski
,
D.
Pogorzelski
,
M.
Jakubowska
, and
J.
Tomasik
, “
Study on tribological properties of lubricating grease with additive of graphene
,” in
Progress in Automation, Robotics and Measuring Techniques
(
Springer
,
2015
), pp.
181
187
.
21.
X.
Fan
,
Y.
Xia
,
L.
Wang
, and
W.
Li
, “
Multilayer graphene as a lubricating additive in bentone grease
,”
Tribol. Lett.
55
,
455
464
(
2014
).
22.
Z.-L.
Cheng
and
X.-X.
Qin
, “
Study on friction performance of graphene-based semi-solid grease
,”
Chin. Chem. Lett.
25
,
1305
1307
(
2014
).
23.
H.
Kinoshita
,
Y.
Nishina
,
A. A.
Alias
, and
M.
Fujii
, “
Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives
,”
Carbon
66
,
720
723
(
2014
).
24.
S. S.
Rawat
,
A.
Harsha
,
A.
Chouhan
, and
O.
Khatri
, “
Effect of graphene-based nanoadditives on the tribological and rheological performance of paraffin grease
,”
J. Mater. Eng. Perform.
29
,
2235
2247
(
2020
).
25.
S.
Yi
,
G.
Li
,
S.
Ding
, and
J.
Mo
, “
Performance and mechanisms of graphene oxide suspended cutting fluid in the drilling of titanium alloy Ti-6Al-4V
,”
J. Manuf. Processes
29
,
182
193
(
2017
).
26.
Q.
Li
,
F.
Li
,
X.
Qi
,
F.
Wei
,
H.
Chen
, and
T.
Wang
, “
Pluronic® f127 stabilized reduced graphene oxide hydrogel for the treatment of psoriasis: In vitro and in vivo studies
,”
Colloids Surf., B
195
,
111246
(
2020
).
27.
H.
Li
,
Y.
Jia
, and
C.
Liu
, “
Pluronic® f127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: Ex vivo and animal studies
,”
Colloids Surf., B
195
,
111259
(
2020
).
28.
N. D.
Bikiaris
,
I.
Koumentakou
,
S.
Lykidou
, and
N.
Nikolaidis
, “
Innovative skin product o/w emulsions containing lignin, multiwall carbon nanotubes and graphene oxide nanoadditives with enhanced sun protection factor and uv stability properties
,”
Appl. Nano
3
,
1
15
(
2022
).
29.
W.
Shao
,
C.
Liu
,
H.
Ma
,
Z.
Hong
,
Q.
Xie
, and
Y.
Lu
, “
Fabrication of pH-sensitive thin-film nanocomposite nanofiltration membranes with enhanced performance by incorporating amine-functionalized graphene oxide
,”
Appl. Surf. Sci.
487
,
1209
1221
(
2019
).
30.
J.
Lee
,
H.-R.
Chae
,
Y. J.
Won
,
K.
Lee
,
C.-H.
Lee
,
H. H.
Lee
,
I.-C.
Kim
, and
J-m
Lee
, “
Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment
,”
J. Membr. Sci.
448
,
223
230
(
2013
).
31.
C.
Zhao
,
X.
Xu
,
J.
Chen
,
G.
Wang
, and
F.
Yang
, “
Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system
,”
Desalination
340
,
59
66
(
2014
).
32.
M.
Wang
,
H.
Yao
,
R.
Wang
, and
S.
Zheng
, “
Chemically functionalized graphene oxide as the additive for cement–matrix composite with enhanced fluidity and toughness
,”
Constr. Build. Mater.
150
,
150
156
(
2017
).
33.
M.
Hu
,
J.
Guo
,
J.
Fan
,
D.
Chen
et al, “
Dispersion of triethanolamine-functionalized graphene oxide (tea-go) in pore solution and its influence on hydration, mechanical behavior of cement composite
,”
Constr. Build. Mater.
216
,
128
136
(
2019
).
34.
Y.
Shang
,
D.
Zhang
,
C.
Yang
,
Y.
Liu
, and
Y.
Liu
, “
Effect of graphene oxide on the rheological properties of cement pastes
,”
Constr. Build. Mater.
96
,
20
28
(
2015
).
35.
L. R. da C.
Moraes
,
H.
Ribeiro
,
E.
Cargnin
,
R. J. E.
Andrade
, and
M. F.
Naccache
, “
Rheology of graphene oxide suspended in yield stress fluid
,”
J. Non-Newtonian Fluid Mech.
286
,
104426
(
2020
).
36.
P.
Paraskar
,
P.
Bari
, and
S.
Mishra
, “
Influence of amine functionalized graphene oxide on mechanical and thermal properties of epoxy matrix composites
,”
Iran. Polym. J.
29
,
47
55
(
2020
).
37.
J.
Jang
,
I.
Park
,
S.-S.
Chee
,
J.-H.
Song
,
Y.
Kang
,
C.
Lee
,
W.
Lee
,
M.-H.
Ham
, and
I. S.
Kim
, “
Graphene oxide nanocomposite membrane cooperatively cross-linked by monomer and polymer overcoming the trade-off between flux and rejection in forward osmosis
,”
J. Membr. Sci.
598
,
117684
(
2020
).
38.
W.
Zhang
,
J.
Ma
,
D.
Gao
,
Y.
Zhou
,
C.
Li
,
J.
Zha
, and
J.
Zhang
, “
Preparation of amino-functionalized graphene oxide by Hoffman rearrangement and its performances on polyacrylate coating latex
,”
Prog. Org. Coat.
94
,
9
17
(
2016
).
39.
F.
Ferreira
,
F.
Brito
,
W.
Franceschi
,
E.
Simonetti
,
L.
Cividanes
,
M.
Chipara
, and
K.
Lozano
, “
Functionalized graphene oxide as reinforcement in epoxy based nanocomposites
,”
Surf. Interfaces
10
,
100
109
(
2018
).
40.
L.
Mei
,
C.
Lin
,
F.
Cao
,
D.
Yang
,
X.
Jia
,
S.
Hu
,
X.
Miao
, and
P.
Wu
, “
Amino-functionalized graphene oxide for the capture and photothermal inhibition of bacteria
,”
ACS Appl. Nano Mater.
2
,
2902
2908
(
2019
).
41.
B.-Y.
Lu
,
G.-Y.
Zhu
,
C.-H.
Yu
,
G.-Y.
Chen
,
C.-L.
Zhang
,
X.
Zeng
,
Q.-M.
Chen
, and
Q.
Peng
, “
Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications
,”
Nano Res.
14
,
185
190
(
2021
).
42.
S.
Curran
,
R.
Hayes
,
A.
Afacan
,
M.
Williams
, and
P.
Tanguy
, “
Properties of Carbopol solutions as models for yield-stress fluids
,”
J. Food Sci.
67
,
176
180
(
2002
).
43.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
, “
Superior thermal conductivity of single-layer graphene
,”
Nano Lett.
8
,
902
907
(
2008
).
44.
D. C.
Marcano
,
D. V.
Kosynkin
,
J. M.
Berlin
,
A.
Sinitskii
,
Z.
Sun
,
A.
Slesarev
,
L. B.
Alemany
,
W.
Lu
, and
J. M.
Tour
, “
Improved synthesis of graphene oxide
,”
ACS Nano
4
,
4806
4814
(
2010
).
45.
H.
Ribeiro
,
W. M.
da Silva
,
J. C.
Neves
,
H. D. R.
Calado
,
R.
Paniago
,
L. M.
Seara
,
D.
das Mercês Camarano
, and
G. G.
Silva
, “
Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy
,”
Polym. Test.
43
,
182
192
(
2015
).
46.
D. Q.
Craig
,
S.
Tamburic
,
G.
Buckton
, and
J. M.
Newton
, “
An investigation into the structure and properties of Carbopol 934 gels using dielectric spectroscopy and oscillatory rheometry
,”
J. Controlled Release
30
,
213
223
(
1994
).
47.
B.
Barry
and
M.
Meyer
, “
The rheological properties of Carbopol gels. I. Continuous shear and creep properties of Carbopol gels
,”
Int. J. Pharm.
2
,
1
25
(
1979
).
48.
“Carbopol® polymer products,” https://www.lubrizol.com/Health/Pharmaceuticals/Excipients/Carbopol-Polymer-Products (accessed 08-16-2022).
49.
P.
Coussot
,
F.
Bertrand
, and
B.
Herzhaft
, “
Rheological behavior of drilling muds, characterization using MRI visualization
,”
Oil Gas Sci. Technol.
59
,
23
29
(
2004
).
50.
P. R.
Varges
,
C. M.
Costa
,
B. S.
Fonseca
,
M. F.
Naccache
, and
P. R.
de Souza Mendes
, “
Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions
,”
Fluids
4
,
3
(
2019
).
51.
F. K.
Oppong
,
L.
Rubatat
,
B. J.
Frisken
,
A. E.
Bailey
, and
J. R.
De Bruyn
, “
Microrheology and structure of a yield-stress polymer gel
,”
Phys. Rev. E
73
,
041405
(
2006
).
52.
Lubrizol Advanced Materials Inc.
, “
Neutralizing CarbopolTM and pemulenTM polymers in aqueous and hydroalcoholic systems
,” Technical Data Sheet TDS-237 (
2009
).
53.
R.
Ketz
,
R.
Prud'homme
, and
W.
Graessley
, “
Rheology of concentrated microgel solutions
,”
Rheol. Acta
27
,
531
539
(
1988
).
54.
I. A.
Gutowski
,
D.
Lee
,
J. R.
de Bruyn
, and
B. J.
Frisken
, “
Scaling and mesostructure of Carbopol dispersions
,”
Rheol. Acta
51
,
441
450
(
2012
).
55.
J.-Y.
Kim
,
J.-Y.
Song
,
E.-J.
Lee
, and
S.-K.
Park
, “
Rheological properties and microstructures of Carbopol gel network system
,”
Colloid Polym. Sci.
281
,
614
623
(
2003
).
56.
M. T.
Islam
,
N.
Rodriguez-Hornedo
,
S.
Ciotti
, and
C.
Ackermann
, “
Rheological characterization of topical carbomer gels neutralized to different pH
,”
Pharm. Res.
21
,
1192
1199
(
2004
).
57.
J.-M.
Piau
, “
Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws
,”
J. Non-Newtonian Fluid Mech.
144
,
1
29
(
2007
).
58.
F.
Renou
,
J.
Stellbrink
, and
G.
Petekidis
, “
Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
54
,
1219
1242
(
2010
).
59.
C.
Perge
,
N.
Taberlet
,
T.
Gibaud
, and
S.
Manneville
, “
Time dependence in large amplitude oscillatory shear: A rheo-ultrasonic study of fatigue dynamics in a colloidal gel
,”
J. Rheol.
58
,
1331
1357
(
2014
).
60.
C.
Kugge
,
N.
Vanderhoek
, and
D.
Bousfield
, “
Oscillatory shear response of moisture barrier coatings containing clay of different shape factor
,”
J. Colloid Interface Sci.
358
,
25
31
(
2011
).
61.
M.
Dinkgreve
,
J.
Paredes
,
M. M.
Denn
, and
D.
Bonn
, “
On different ways of measuring “the” yield stress
,”
J. Non-Newtonian Fluid Mech.
238
,
233
241
(
2016
).
62.
W. Y.
Shih
,
W.-H.
Shih
, and
I. A.
Aksay
, “
Elastic and yield behavior of strongly flocculated colloids
,”
J. Am. Ceram. Soc.
82
,
616
624
(
1999
).
63.
J. E.
Elliott
,
M.
Macdonald
,
J.
Nie
, and
C. N.
Bowman
, “
Structure and swelling of poly (acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure
,”
Polymer
45
,
1503
1510
(
2004
).
64.
P.
Coussot
,
L.
Tocquer
,
C.
Lanos
, and
G.
Ovarlez
, “
Macroscopic vs. local rheology of yield stress fluids
,”
J. Non-Newtonian Fluid Mech.
158
,
85
90
(
2009
).
65.
F.
Oppong
and
J.
De Bruyn
, “
Mircorheology and jamming in a yield-stress fluid
,”
Rheol. Acta
50
,
317
326
(
2011
).
66.
E.
Di Giuseppe
,
F.
Corbi
,
F.
Funiciello
,
A.
Massmeyer
,
T.
Santimano
,
M.
Rosenau
, and
A.
Davaille
, “
Characterization of Carbopol[textregistered] hydrogel rheology for experimental® tectonics and geodynamics
,”
Tectonophysics
642
,
29
45
(
2015
).
68.
K. G.
Wilcox
,
S. K.
Kozawa
, and
S.
Morozova
, “
Fundamentals and mechanics of polyelectrolyte gels: Thermodynamics, swelling, scattering, and elasticity
,”
Chem. Phys. Rev.
2
,
041309
(
2021
).
69.
M.
Ullner
,
K.
Qamhieh
, and
B.
Cabane
, “
Osmotic pressure in polyelectrolyte solutions: Cell-model and bulk simulations
,”
Soft matter
14
,
5832
5846
(
2018
).
70.
M.
Toepke
and
W.
Murphy
, “
1.31 dynamic hydrogels
,”
Compr. Biomater.
1
,
705
(
2017
).
71.
A. V.
Dobrynin
, “
Polyelectrolytes: On the doorsteps of the second century
,”
Polymer
202
,
122714
(
2020
).
72.
S. R.
Raghavan
,
L. A.
Chen
,
C.
McDowell
,
S. A.
Khan
,
R.
Hwang
, and
S.
White
, “
Rheological study of crosslinking and gelation in chlorobutyl elastomer systems
,”
Polymer
37
,
5869
5875
(
1996
).
73.
J.
Mewis
and
N. J.
Wagner
, “
Thixotropy
,”
Adv. Colloid Interface Sci.
147–148
,
214
227
(
2009
).
74.
A.
Puisto
,
M.
Mohtaschemi
,
M. J.
Alava
, and
X.
Illa
, “
Dynamic hysteresis in the rheology of complex fluids
,”
Phys. Rev. E
91
,
042314
(
2015
).
75.
C. N.
Lunardi
,
A. J.
Gomes
,
F. S.
Rocha
,
J.
De Tommaso
, and
G. S.
Patience
, “
Experimental methods in chemical engineering: Zeta potential
,”
Can. J. Chem. Eng.
99
,
627
639
(
2021
).
76.
L.
Nová
,
F.
Uhlík
, and
P.
Košovan
, “
Local pH and effective pKa of weak polyelectrolytes–insights from computer simulations
,”
Phys. Chem. Chem. Phys.
19
,
14376
14387
(
2017
).
77.
J.
Landsgesell
,
L.
Nová
,
O.
Rud
,
F.
Uhlík
,
D.
Sean
,
P.
Hebbeker
,
C.
Holm
, and
P.
Košovan
, “
Simulations of ionization equilibria in weak polyelectrolyte solutions and gels
,”
Soft Matter
15
,
1155
1185
(
2019
).
78.
P.
Lefrançois
,
E.
Ibarboure
,
B.
Payré
,
E.
Gontier
,
J.-F.
Le Meins
, and
C.
Schatz
, “
Insights into Carbopol gel formulations: Microscopy analysis of the microstructure and the influence of polyol additives
,”
J. Appl. Polym. Sci.
132
,
42761
(
2015
).

Supplementary Material

You do not currently have access to this content.