The study focuses on predicting the hydrodynamics of sodium alginate-based microgel “liquid core–gel shell” particles for droplet-based bioprinting. Hydrophobic polytetrafluoroethylene nanofiber-based coating (NBC #1) and hydrophilic polycaprolactone–polyvinylpyrrolidone NBC #2 are manufactured to serve as the basis for microgel deposition. An approach is proposed to model the flow of a Maxwell gel-like liquid with different fluidity, surface tension, and initial velocity along an inhomogeneous interface after microgel particle–NBC collision. Wetting and anti-wetting pressure differences allow estimating liquid impalement into NBCs at We = 10–50. For NBC #2, the initial particle velocity plays mainly a decisive role in predicting the contact diameter and height at maximum spreading and receding. For NBC #1, the pinning is considered by introducing the complex parameter resolving particle inertia, microgel rheology and surface tension, and NBC characteristics. The flow along the porous interface physically correlates with the extended Freundlich model, explaining the surface inhomogeneity caused by multilayer adsorption.

1.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
2.
N.
Blanken
,
M. S.
Saleem
,
C.
Antonini
, and
M.-J.
Thoraval
, “
Rebound of self-lubricating compound drops
,”
Sci. Adv.
6
(
11
),
eaay3499
(
2020
).
3.
A. N.
Lembach
,
H.-B.
Tan
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
Y.
Zhang
,
C.
Tropea
, and
A. L.
Yarin
, “
Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats
,”
Langmuir
26
(
12
),
9516
9523
(
2010
).
4.
R.
Blossey
, “
Self-cleaning surfaces—Virtual realities
,”
Nat. Mater.
2
(
5
),
301
306
(
2003
).
5.
L.
Cao
,
A. K.
Jones
,
V. K.
Sikka
,
J.
Wu
, and
D.
Gao
, “
Anti-icing superhydrophobic coatings
,”
Langmuir
25
(
21
),
12444
12448
(
2009
).
6.
C.
Antonini
,
M.
Innocenti
,
T.
Horn
,
M.
Marengo
, and
A.
Amirfazli
, “
Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems
,”
Cold Regions Sci. Technol.
67
(
1
),
58
67
(
2011
).
7.
A.
Kirillova
,
L.
Ionov
,
I. V.
Roisman
, and
A.
Synytska
, “
Hybrid Hairy Janus particles for anti-icing and de-icing surfaces: Synergism of properties and effects
,”
Chem. Mater.
28
(
19
),
6995
7005
(
2016
).
8.
J. P.
Rothstein
, “
Slip on superhydrophobic surfaces
,”
Annu. Rev. Fluid Mech.
42
(
1
),
89
109
(
2010
).
9.
A.
Marmur
, “
Super-hydrophobicity fundamentals: Implications to biofouling prevention
,”
Biofouling
22
(
2
),
107
115
(
2006
).
10.
D.
Zhang
,
L.
Wang
,
H.
Qian
, and
X.
Li
, “
Superhydrophobic surfaces for corrosion protection: A review of recent progresses and future directions
,”
J. Coat. Technol. Res.
13
(
1
),
11
29
(
2016
).
11.
A. S.
Moita
and
A. L.
Moreira
, “
Experimental study on fuel drop impacts onto rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization
,”
Proc. Combust. Inst.
31
(
2
),
2175
2183
(
2007
).
12.
A.
Sreenivasan
and
S.
Deivandren
, “
Splashing of fuel drops impacting on heated solid surfaces
,”
Phys. Fluids
32
(
3
),
032104
(
2020
).
13.
C.
Vernay
,
L.
Ramos
,
J.-P.
Douzals
,
R.
Goyal
,
J.-C.
Castaing
, and
C.
Ligoure
, “
Drop impact experiment as a model experiment to investigate the role of oil-in-water emulsions in controlling the drop size distribution of an agricultural spray
,”
Atomiz. Spr.
26
(
8
),
827
851
(
2016
).
14.
M.
Piskunov
,
N.
Khomutov
,
A.
Semyonova
,
A.
Di Martino
,
E.
Khan
, and
E.
Bolbasov
, “
Microgel particle collision with smooth and nanofiber hydrophobic surfaces during three-dimensional printing of a biopolymer layer
,”
Langmuir
39
(
25
),
8841
8854
(
2023
).
15.
C. W.
Visser
,
T.
Kamperman
,
L. P.
Karbaat
,
D.
Lohse
, and
M.
Karperien
, “
In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials
,”
Sci. Adv.
4
(
1
),
1
8
(
2018
).
16.
X.
Deng
,
F.
Schellenberger
,
P.
Papadopoulos
,
D.
Vollmer
, and
H.-J.
Butt
, “
Liquid drops impacting superamphiphobic coatings
,”
Langmuir
29
(
25
),
7847
7856
(
2013
).
17.
M.
Piskunov
,
N.
Khomutov
,
A.
Semyonova
,
A.
Ashikhmin
, and
S.
Misyura
, “
Unsteady convective flow of a preheated water-in-oil emulsion droplet impinging on a heated wall
,”
Phys. Fluids
34
(
9
),
93311
(
2022
).
18.
A.
Semyonova
,
N.
Khomutov
,
S.
Misyura
, and
M.
Piskunov
, “
Dynamic and kinematic characteristics of unsteady motion of a water-in-oil emulsion droplet in collision with a solid heated wall under conditions of convective heat transfer
,”
Int. Commun. Heat Mass Transfer
137
,
106277
(
2022
).
19.
A.
Ashikhmin
,
A.
Semyonova
,
V.
Fedorov
,
S.
Misyura
, and
M.
Piskunov
, “
Nucleate boiling heat transfer during water–IN–oil emulsion drop impact onto a heated solid surface
,”
Int. J. Therm. Sci.
184
,
107989
(
2023
).
20.
A.
Ashikhmin
,
N.
Khomutov
,
R.
Volkov
,
M.
Piskunov
, and
P.
Strizhak
, “
Effect of monodisperse coal particles on the maximum drop spreading after impact on a solid wall
,”
Energies
16
(
14
),
5291
(
2023
).
21.
S.
Noroozi
,
S.
Tavangar
, and
S. H.
Hashemabadi
, “
CFD simulation of wall impingement of tear shape viscoplastic drops utilizing openfoam
,”
Appl. Rheol.
23
(
5
),
1
13
(
2013
).
22.
N. A.
Khomutov
,
A. E.
Semyonova
,
M. V.
Belonogov
,
A.
Di Martino
,
E. A.
Khan
, and
M. V.
Piskunov
, “
Features of the destruction of a microjet of a diluted polymer solution into main and satellite microdrops under the action of an external vibrational impact
,”
Tech. Phys.
67
(
12
),
779
790
(
2022
).
23.
X.
Ye
and
D.
Van Der Meer
, “
Hydrogel sphere impact cratering, spreading and bouncing on granular media
,”
J. Fluid Mech.
929
,
1
22
(
2021
).
24.
B.
Hou
,
C.
Wu
,
X.
Li
,
J.
Huang
, and
M.
Chen
, “
Contact line-based model for the Cassie-Wenzel transition of a sessile droplet on the hydrophobic micropillar-structured surfaces
,”
Appl. Surf. Sci.
542
,
148611
(
2021
).
25.
J. B.
Lee
and
S. H.
Lee
, “
Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces
,”
Langmuir
27
(
11
),
6565
6573
(
2011
).
26.
A.
Marmur
, “
Solid-surface characterization by wetting
,”
Annu. Rev. Mater. Res.
39
(
1
),
473
489
(
2009
).
27.
J.
Lyu
,
L.
Gao
,
Y.
Zhang
,
M.
Bai
,
Y.
Li
,
D.
Gao
, and
C.
Hu
, “
Dynamic spreading characteristics of droplet on the hydrophobic surface with microstructures
,”
Colloids Surf. A
610
,
125693
(
2021
).
28.
L. K.
Malla
,
N. D.
Patil
,
R.
Bhardwaj
, and
A.
Neild
, “
Droplet bouncing and breakup during impact on a microgrooved surface
,”
Langmuir
33
(
38
),
9620
9631
(
2017
).
29.
Y.
Pan
,
K.
Shi
,
X.
Duan
, and
G. F.
Naterer
, “
Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities
,”
Int. J. Heat Mass Transfer
129
,
953
964
(
2019
).
30.
X. W.
Wang
,
J. Y.
Ho
, and
K. C.
Leong
, “
An experimental investigation of single droplet impact cooling on hot enhanced surfaces fabricated by selective laser melting
,”
Int. J. Heat Mass Transfer
120
,
652
670
(
2018
).
31.
P.
Zhao
,
G. K.
Hargrave
,
H. K.
Versteeg
,
C. P.
Garner
,
B. A.
Reid
,
E. J.
Long
, and
H.
Zhao
, “
The dynamics of droplet impact on a heated porous surface
,”
Chem. Eng. Sci.
190
,
232
247
(
2018
).
32.
L.
Liu
,
G.
Cai
, and
P. A.
Tsai
, “
Drop impact on heated nanostructures
,”
Langmuir
36
(
34
),
10051
10060
(
2020
).
33.
X.
Zhou
,
H.
Wang
,
Q.
Zhang
,
Y.
Tian
,
Q.
Deng
,
X.
Zhu
,
Y.
Ding
,
R.
Chen
, and
Q.
Liao
, “
Droplet impact on sparse hydrophobic pillar surface: Impact phenomena, spreading mode, and droplet breakup
,”
Phys. Fluids
34
(
11
),
112101
(
2022
).
34.
C.
Cai
and
I.
Mudawar
, “
Review of the dynamic Leidenfrost point temperature for droplet impact on a heated solid surface
,”
Int. J. Heat Mass Transfer
217
,
124639
(
2023
).
35.
D.
Bartolo
,
F.
Bouamrirene
,
É.
Verneuil
,
A.
Buguin
,
P.
Silberzan
, and
S.
Moulinet
, “
Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces
,”
Europhys. Lett.
74
(
2
),
299
305
(
2006
).
36.
M.
Reyssat
,
J. M.
Yeomans
, and
D.
Quéré
, “
Impalement of fakir drops
,”
Europhys. Lett.
81
(
2
),
26006
(
2007
).
37.
M.
Heinz
,
P.
Stephan
, and
T.
Gambaryan-Roisman
, “
Influence of nanofiber coating thickness and drop volume on spreading, imbibition, and evaporation
,”
Colloids Surf. A
631
,
127450
(
2021
).
38.
S. M.
Oliveira
,
R. L.
Reis
, and
J. F.
Mano
, “
Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends
,”
Biotechnol. Adv.
33
(
6
),
842
855
(
2015
).
39.
A.
Kumar
,
J.
Kleinen
,
J.
Venzmer
,
A.
Trybala
,
V.
Starov
, and
T.
Gambaryan-Roisman
, “
Spreading and imbibition of vesicle dispersion droplets on porous substrates
,”
Colloids Interfaces
3
(
3
),
53
(
2019
).
40.
J.
Leijten
and
A.
Khademhosseini
, “
From nano to macro: Multiscale materials for improved stem cell culturing and analysis
,”
Cell Stem Cell
18
(
1
),
20
24
(
2016
).
41.
B.
He
,
N. A.
Patankar
, and
J.
Lee
, “
Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces
,”
Langmuir
19
(
12
),
4999
5003
(
2003
).
42.
E.
Lee
and
D. H.
Kim
, “
Simple fabrication of asphalt-based superhydrophobic surface with controllable wetting transition from Cassie-Baxter to Wenzel wetting state
,”
Colloids Surf. A
625
,
126927
(
2021
).
43.
R.
Chen
,
L.
Jiao
,
X.
Zhu
,
Q.
Liao
,
D.
Ye
,
B.
Zhang
,
W.
Li
,
Y.
Lei
, and
D.
Li
, “
Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation
,”
Appl. Therm. Eng.
144
,
945
959
(
2018
).
44.
A.
Lafuma
and
D.
Quéré
, “
Superhydrophobic states
,”
Nat. Mater.
2
(
7
),
457
460
(
2003
).
45.
Z.
Wang
,
H.
Wei
,
Z.
He
,
X.
Liu
,
L.
Chen
, and
W.-Q.
Tao
, “
Effects of Cassie-Wenzel wetting transition on two-phase flow in porous media
,”
Int. Commun. Heat Mass Transfer
146
,
106931
(
2023
).
46.
E.
Melnik
,
K.
Stankevich
,
A.
Zinovyev
,
E.
Poletykina
,
A.
Andreev
,
V.
Bouznik
, and
E.
Bolbasov
, “
Effect of heat treatments and aggressive media on mechanical properties of porous polytetrafluoroethylene membranes fabricated via electrospinning
,”
J. Fluorine Chem.
264
,
110062
(
2022
).
47.
S.
Goreninskii
,
N.
Danilenko
,
E.
Bolbasov
,
A.
Evtina
,
M.
Buldakov
,
N.
Cherdyntseva
,
M.
Saqib
,
N.
Beshchasna
,
J.
Opitz
,
V.
Filimonov
, and
S.
Tverdokhlebov
, “
Enhanced properties of poly(ε-caprolactone)/polyvinylpyrrolidone electrospun scaffolds fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol
,”
J. Appl. Polym. Sci.
138
(
23
),
app50535
(
2021
).
48.
V. E.
Sizov
,
M. S.
Kondratenko
,
M. O.
Gallyamov
, and
K. J.
Stevenson
, “
Advanced porous polybenzimidazole membranes for vanadium redox batteries synthesized via a supercritical phase-inversion method
,”
J. Supercrit. Fluids
137
,
111
117
(
2018
).
49.
S.
Ahadian
and
A.
Khademhosseini
, “
A perspective on 3D bioprinting in tissue regeneration
,”
Bio-Des. Manuf.
1
(
3
),
157
160
(
2018
).
50.
H.
Gudapati
,
M.
Dey
, and
I.
Ozbolat
, “
A comprehensive review on droplet-based bioprinting: Past, present and future
,”
Biomaterials
102
,
20
42
(
2016
).
51.
N.
Hong
,
G. H.
Yang
,
J. H.
Lee
, and
G. H.
Kim
, “
3D bioprinting and its in vivo applications
,”
J. Biomed. Mater. Res.
106
(
1
),
444
459
(
2018
).
52.
C.
Mandrycky
,
Z.
Wang
,
K.
Kim
, and
D. H.
Kim
, “
3D bioprinting for engineering complex tissues
,”
Biotechnol. Adv.
34
(
4
),
422
434
(
2016
).
53.
E. N.
Bolbasov
,
K. S.
Stankevich
,
E. A.
Sudarev
,
V. M.
Bouznik
,
V. L.
Kudryavtseva
,
L. V.
Antonova
,
V. G.
Matveeva
,
Y. G.
Anissimov
, and
S. I.
Tverdokhlebov
, “
The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride–tetrafluoroethylene copolymer
,”
Mater. Chem. Phys.
182
,
338
346
(
2016
).
54.
I.
Kolesnik
,
T.
Tverdokhlebova
,
N.
Danilenko
,
E.
Plotnikov
,
D.
Kulbakin
,
A.
Zheravin
,
V.
Bouznik
, and
E.
Bolbasov
, “
Characterization and determination of the biocompatibility of porous polytetrafluoroethylene membranes fabricated via electrospinning
,”
J. Fluorine Chem.
246
,
109798
(
2021
).
55.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Time evolution of liquid drop impact onto solid, dry surfaces
,”
Exp. Fluids
33
(
1
),
112
124
(
2002
).
56.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
(
1
),
3
18
(
1984
).
57.
S.
Brulin
,
I. V.
Roisman
, and
C.
Tropea
, “
Fingering instability of a viscous liquid bridge stretched by an accelerating substrate
,”
J. Fluid Mech.
899
,
A1
(
2020
).
58.
A.
Eslami
and
S. M.
Taghavi
, “
Viscous fingering of yield stress fluids: The effects of wettability
,”
J. Non-Newtonian Fluid Mech.
264
,
25
47
(
2019
).
59.
T.
Deng
,
K. K.
Varanasi
,
M.
Hsu
,
N.
Bhate
,
C.
Keimel
,
J.
Stein
, and
M.
Blohm
, “
Nonwetting of impinging droplets on textured surfaces
,”
Appl. Phys. Lett.
94
(
13
),
133109
(
2009
).
60.
F. P.
Bowden
and
J. H.
Brunton
, “
The deformation of solids by liquid impact at supersonic speeds
,”
Proc. R. Soc. London, Ser. A
263
(
1315
),
433
450
(
1997
).
61.
J. P.
Dear
and
J. E.
Field
, “
High‐speed photography of surface geometry effects in liquid/solid impact
,”
J. Appl. Phys.
63
(
4
),
1015
1021
(
1988
).
62.
L.
Chen
,
Y.
Wang
,
X.
Peng
,
Q.
Zhu
, and
K.
Zhang
, “
Impact dynamics of aqueous polymer droplets on superhydrophobic surfaces
,”
Macromolecules
51
(
19
),
7817
7827
(
2018
).
63.
M.
Jaroniec
, “
Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm
,”
Surf. Sci.
50
(
2
),
553
564
(
1975
).
64.
A. W.
Adamson
and
A. P.
Gast
,
Physical Chemistry of Surfaces
(
Wiley
,
New York
,
1997
).
65.
T. A.
Saleh
, in
Interface Science and Technology
, edited by T. A. Saleh (
Elsevier
,
2022
), pp.
99
126
.
You do not currently have access to this content.