The liquid jet formation upon the collapse of two interacting cavitation bubbles is a physics-rich complex problem, which has possible implications such as the membrane sonoporation. In this paper, we employed both experiment and numerical simulations to study the jet behavior in a bubble, which is affected by another one introduced at various time delays. We provided the regime diagram, which shows the transition of the jet direction as a function of time delay and distance between bubbles. The maximum velocity of the jet in the primary bubble was investigated. The highest velocity was achieved when the primary bubble split into two parts upon collapse. It was found that a high curvature on the rim of the collapsing primary bubble causes the lateral pinch-off, leading to the formation of a fast and thin vertical jet approaching the secondary bubble. The results would help design an effective sonoporation system. The physics depicted in this manuscript might also contribute to the deeper understanding of the jet in a bubble interacting with not only another bubble but also other boundaries.

1.
M.
Eckert
,
The Dawn of Fluid Dynamics: A Discipline between Science and Technology
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
2007
).
2.
W.
Lauterborn
, “
Cavitation bubble dynamics - New tools for an intricate problem
,”
Appl. Sci. Res.
38
,
165
178
(
1982
).
3.
J. R.
Blake
and
D. C.
Gibson
, “
Growth and collapse of a vapour cavity near a free surface
,”
J. Fluid Mech.
111
,
123
140
(
1981
).
4.
J. R.
Blake
,
D. M.
Leppinen
, and
Q.
Wang
, “
Cavitation and bubble dynamics: The Kelvin impulse and its applications
,”
Interface Focus
5
,
20150017
(
2015
).
5.
O.
Supponen
,
D.
Obreschkow
,
M.
Tinguely
,
P.
Kobel
,
N.
Dorsaz
, and
M.
Farhat
, “
Scaling laws for jets of single cavitation bubbles
,”
J. Fluid Mech.
802
,
263
293
(
2016
).
6.
A.
Vogel
,
W.
Lauterborn
, and
R.
Timmi
, “
Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary
,”
J. Fluid Mech.
206
,
299
338
(
1988
).
7.
Y.
Tomita
and
A.
Shima
, “
Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
,”
J. Fluid Mech.
169
,
535
564
(
1986
).
8.
J. R.
Blake
,
G. S.
Keen
,
R. P.
Tong
, and
M.
Wilson
, “
Acoustic cavitation: The fluid dynamics of non–spherical bubbles
,”
Phys. Eng. Sci.
357
,
251
267
(
1999
).
9.
E.
Klaseboer
,
K. C.
Hung
,
C.
Wang
,
C.
Wang
,
B. C.
Khoo
,
P.
Boyce
,
S.
Debono
, and
H.
Charlier
, “
Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure
,”
J. Fluid Mech.
537
,
387
413
(
2005
).
10.
A.
Osterman
,
M.
Dular
, and
B.
Širok
, “
Numerical simulation of a near-wall bubble collapse in an ultrasonic field
,”
J. Fluid Sci. Technol.
4
,
210
221
(
2009
).
11.
Y.
Tomita
,
K.
Sato
, and
A.
Shima
, “Theoretical and experimental investigations on the nonspherical motion of a bubble near a plane rigid wall,”
Trans. Jpn. Soc. Mech. Eng., B
59
,
117
125
(
1993
).
12.
A.
Bußmann
,
F.
Riahi
,
B.
Gökce
,
S.
Adami
,
S.
Barcikowski
, and
N. A.
Adams
, “
Investigation of cavitation bubble dynamics near a solid wall by high-resolution numerical simulation
,”
Phys. Fluids
35
,
016115
(
2023
).
13.
Y.
Iga
and
H.
Sasaki
, “
Relationship between a non-spherical collapse of a bubble and a stress state inside a wall
,”
Phys. Fluids
35
,
023312
(
2023
).
14.
G. T.
Bokman
,
L.
Biasiori-Poulanges
,
B.
Lukić
,
C.
Bourquard
,
D. W.
Meyer
,
A.
Rack
, and
O.
Supponen
, “
High-speed x-ray phase-contrast imaging of single cavitation bubbles near a solid boundary
,”
Phys. Fluids
35
,
013322
(
2023
).
15.
C. K.
Turangan
,
G. P.
Ong
,
E.
Klaseboer
, and
B. C.
Khoo
, “
Experimental and numerical study of transient bubble-elastic membrane interaction
,”
J. Appl. Phys.
100
,
054910
(
2006
).
16.
Y.
Tomita
,
P. B.
Robinson
,
R. P.
Tong
, and
J. R.
Blake
, “
Growth and collapse of cavitation bubbles near a curved rigid boundary
,”
J. Fluid Mech.
466
,
259
(
2002
).
17.
S.
Li
,
A.-M.
Zhang
, and
R.
Han
, “
Letter: Counter-jet formation of an expanding bubble near a curved elastic boundary
,”
Phys. Fluids
30
,
121703
(
2018
).
18.
H.
Reese
,
S.-W.
Ohl
, and
C.-D.
Ohl
, “
Cavitation bubble induced wall shear stress on an elastic boundary
,”
Phys. Fluids
35
,
076122
(
2023
).
19.
Z.
Ren
,
H.
Han
,
H.
Zeng
,
C.
Sun
,
Y.
Tagawa
,
Z.
Zuo
, and
S.
Liu
, “
Interactions of a collapsing laser-induced cavitation bubble with a hemispherical droplet attached to a rigid boundary
,”
J. Fluid Mech.
976
,
A11
(
2023
).
20.
E.-A.
Brujan
,
T.
Noda
,
A.
Ishigami
,
T.
Ogasawara
, and
H.
Takahira
, “
Dynamics of laser-induced cavitation bubbles near two perpendicular rigid walls
,”
J. Fluid Mech.
841
,
28
49
(
2018
).
21.
Y.
Tagawa
and
I. R.
Peters
, “
Bubble collapse and jet formation in corner geometries
,”
Phys. Rev. Fluids
3
,
081601
(
2018
).
22.
J.
Cui
,
Z.-P.
Chen
,
Q.
Wang
,
T.-R.
Zhou
, and
C.
Corbett
, “
Experimental studies of bubble dynamics inside a corner
,”
Ultrason. Sonochem.
64
,
104951
(
2020
).
23.
Q.
Wang
,
M.
Mahmud
,
J.
Cui
,
W. R.
Smith
, and
A. D.
Walmsley
, “
Numerical investigation of bubble dynamics at a corner
,”
Phys. Fluids
32
,
053306
(
2020
).
24.
W.
White
,
S. A.
Beig
, and
E.
Johnsen
, “
Pressure fields produced by single-bubble collapse near a corner
,”
Phys. Rev. Fluids
8
,
023601
(
2023
).
25.
E. D.
Andrews
,
D. F.
Rivas
, and
I. R.
Peters
, “
Cavity collapse near slot geometries
,”
J. Fluid Mech.
901
,
A29
(
2020
).
26.
E.-A.
Brujan
,
A.-M.
Zhang
,
Y.-L.
Liu
,
T.
Ogasawara
, and
H.
Takahira
, “
Jetting and migration of a laser-induced cavitation bubble in a rectangular channel
,”
J. Fluid Mech.
948
,
A6
(
2022
).
27.
E. D.
Andrews
,
D.
Fernández Rivas
, and
I. R.
Peters
, “
Bubble collapse near porous plates
,”
J. Fluid Mech.
962
,
A11
(
2023
).
28.
S.
Li
,
A. M.
Zhang
,
R.
Han
, and
Y. Q.
Liu
, “
Experimental and numerical study on bubble-sphere interaction near a rigid wall
,”
Phys. Fluids
29
,
092102
(
2017
).
29.
P.
Gregorčič
,
R.
Petkovšek
, and
J.
Možina
, “
Investigation of a cavitation bubble between a rigid boundary and a free surface
,”
J. Appl. Phys
102
,
094904
(
2007
).
30.
Q. X.
Wang
,
K. S.
Yeo
,
B. C.
Khoo
, and
K. Y.
Lam
, “
Strong interaction between a buoyancy bubble and a free surface
,”
Theor. Comput. Fluid Dyn.
8
,
73
88
(
1996
).
31.
T.
Li
,
A.-M.
Zhang
,
S.-P.
Wang
,
S.
Li
, and
W.-T.
Liu
, “
Bubble interactions and bursting behaviors near a free surface
,”
Phys. Fluids
31
,
042104
(
2019
).
32.
A.
Kiyama
,
R.
Rabbi
,
Z.
Pan
,
S.
Dutta
,
J. S.
Allen
, and
T. T.
Truscott
, “
Morphology of bubble dynamics and sound in heated oil
,”
Phys. Fluids
34
,
062107
(
2022
).
33.
E.
Robert
,
J.
Lettry
,
M.
Farhat
,
P. A.
Monkewitz
, and
F.
Avellan
, “
Cavitation bubble behavior inside a liquid jet
,”
Phys. Fluids
19
,
067106
(
2007
).
34.
D.
Obreschkow
,
P.
Kobel
,
N.
Dorsaz
,
A.
de Bosset
,
C.
Nicollier
, and
M.
Farhat
, “
Cavitation bubble dynamics inside liquid drops in microgravity
,”
Phys. Rev. Lett.
97
,
094502
(
2006
).
35.
A.
Kiyama
,
T.
Shimazaki
,
J. M.
Gordillo
, and
Y.
Tagawa
, “
Direction of the microjet produced by the collapse of a cavitation bubble located in a corner of a wall and a free surface
,”
Phys. Rev. Fluids
6
,
083601
(
2021
).
36.
R. C. C.
Chen
,
Y. T.
Yu
,
K. W.
Su
,
J. F.
Chen
, and
Y. F.
Chen
, “
Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface
,”
Opt. Express
21
,
445
(
2013
).
37.
J. R.
Blake
and
D. C.
Gibson
, “
Cavitation bubbles near boundaries
,”
Annu. Rev. Fluid Mech.
19
,
99
(
1987
).
38.
Y.
Sun
,
Z.
Yao
,
H.
Wen
,
Q.
Zhong
, and
F.
Wang
, “
Cavitation bubble collapse in a vicinity of a rigid wall with a gas entrapping hole
,”
Phys. Fluids
34
,
073314
(
2022
).
39.
K.
Yasui
, “Acoustic cavitation: From ultrasonic cleaning to sonochemical synthesis of nanoparticles,”
J. Jpn. Soc. Mech. Eng.
119
,
28
(
2016
) (in Japanese).
40.
S.
Yamada
,
S.
Nakamyra
,
M.
Kakikawa
, and
T.
Ueno
, “Sterilization action on cavitation phenomenon generated by magnetostrictive actuator,”
J. Jpn. Soc. Appl. Electromagn.
21
,
1031
1040
(
2001
).
41.
P.
Prentice
,
A.
Cuschieri
,
K.
Dholakia
,
M.
Prausnitz
, and
P.
Campbell
, “
Membrane disruption by optically controlled microbubble cavitation
,”
Nat. Phys.
1
,
107
(
2005
).
42.
M.
Ward
,
J.
Wu
, and
J.-F.
Chiu
, “
Ultrasound-induced cell lysis and sonoporation enhanced by contrast agents
,”
J. Acoust. Soc. Am.
105
,
2951
(
1999
).
43.
D. L. M. S.
Bao
and
B. D.
Thrall
, “
Transfection of a reporter plasmid into cultured cells by sonoporation in vitro
,”
Ultrasound Med. Biol.
23
,
953
(
1997
).
44.
H.
Ueda
,
M.
Mutoh
,
T.
Seki
,
D.
Kobayashi
, and
Y.
Morimoto
, “
Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery
,”
Biol. Pharm. Bull.
32
,
916
(
2009
).
45.
G. N.
Sankin
,
F.
Yuan
, and
P.
Zhong
, “
Pulsating tandem microbubble for localized and directional single-cell membrane poration
,”
Phys. Rev. Lett.
105
,
078101
(
2010
).
46.
C.
Ji
,
B.
Li
,
J.
Zou
, and
H.
Yang
, “
Interaction of two spark generated bubbles beneath free surface
,”
Exp. Therm. Fluid Sci.
81
,
76
(
2017
).
47.
S.
Li
,
A.-M.
Zhang
,
R.
Han
, and
P.
Cui
, “
Experimental and numerical study of two underwater explosion bubbles: Coalescence, fragmentation and shock wave emission
,”
Ocean Eng.
190
,
106414
(
2019
).
48.
Y.
Zhang
,
Q.
Min
,
Y.
Zhang
, and
X.
Du
, “
Effects of liquid compressibility on bubble-bubble interactions between oscillating bubbles
,”
J. Hydrodyn.
28
,
832
(
2016
).
49.
S.
Li
and
B. Y.
Ni
, “
Simulation on the interaction between multiple bubbles and free surface with viscous effects
,”
Eng. Anal. Boundary Elem.
68
,
63
(
2016
).
50.
R.
Han
,
L.
Tao
,
A.-M.
Zhang
, and
S.
Li
, “
A three-dimensional modeling for coalescence of multiple cavitation bubbles near a rigid wall
,”
Phys. Fluids
31
,
062107
(
2019
).
51.
R.
Han
,
S.
Li
,
A. M.
Zhang
, and
Q. X.
Wang
, “
Modelling for three dimensional coalescence of two bubbles
,”
Phys. Fluids
28
,
062104
(
2016
).
52.
R.
Han
,
A.
Zhang
, and
Y.
Liu
, “
Numerical investigation on the dynamics of two bubbles
,”
Ocean Eng.
110
,
325
(
2015
).
53.
M.
Koch
,
J. M.
Rosselló
,
C.
Lechner
,
W.
Lauterborn
, and
R.
Mettin
, “
Dynamics of a laser-induced bubble above the flat top of a solid cylinder—Mushroom-shaped bubbles and the fast jet
,”
Fluids
7
,
2
(
2021
).
54.
J.
Mur
,
V.
Agrež
,
J.
Zevnik
,
R.
Petkovšek
, and
M.
Dular
, “
Microbubble collapse near a fiber: Broken symmetry conditions and a planar jet formation
,”
Phys. Fluids
35
,
023305
(
2023
).
55.
Y.
Gou
,
J.
Zgan
,
A.
Kiyama
, and
Z.
Pan
, “On the jets induced by a cavitation bubble near a cylinder,” arXiv:2307.04331 (
2023
).
56.
E.-A.
Brujan
,
K.
Nahen
,
P.
Schmidt
, and
A.
Vogel
, “
Dynamics of laser-induced cavitation bubbles near an elastic boundary
,”
J. Fluid Mech.
433
,
251
281
(
2001
).
57.
A.
Wang
,
Y.
Zhong
,
G.
Wang
,
J. W. J.
Huang
, and
Y.
Wang
, “
Experimental study on the formation of two axial jets of cavitation bubbles near soft membranes with different thicknesses
,”
AIP Adv.
12
,
095023
(
2022
).
58.
S.
Li
,
A.-M.
Zhang
,
S.
Wang
, and
R.
Han
, “
Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow
,”
Phys. Fluids
30
,
082111
(
2018
).
59.
S.
Li
,
A.-M.
Zhang
,
R.
Han
, and
Q.
Ma
, “
3D full coupling model for strong interaction between a pulsating bubble and a movable sphere
,”
J. Comput. Phys.
392
,
713
(
2019
).
60.
S. W.
Fong
,
D.
Adhikari
,
E.
Klaseboer
, and
B. C.
Khoo
, “
Interactions of multiple spark-generated bubbles with phase differences
,”
Exp Fluids
46
,
705
(
2009
).
61.
L. W.
Chew
,
E.
Klaseboer
,
S.-W.
Ohl
, and
B. C.
Khoo
, “
Interaction of two differently sized oscillating bubbles in a free field
,”
Phys. Rev. E
84
,
066307
(
2011
).
62.
Y.
Tomita
and
K.
Sato
, “
Pulsed jets driven by two interacting cavitation bubbles produced at different times
,”
J. Fluid Mech.
819
,
465
493
(
2017
).
63.
W.
Liang
,
R.
Chen
,
J.
Zheng
,
X.
Li
, and
F.
Lu
, “
Interaction of two approximately equal-size bubbles produced by sparks in a free field
,”
Phys. Fluids
33
,
067107
(
2021
).
64.
B.
Han
,
K.
Köhler
,
K.
Jungnickel
,
R.
Mettin
,
W.
Lauterborn
, and
A.
Vogel
, “
Dynamics of laser-induced bubble pairs
,”
J. Fluid Mech.
771
,
706
(
2015
).
65.
L.
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
(
1917
).
66.
A.
Vogel
,
K.
Nahen
,
D.
Theisen
, and
J.
Noack
, “
Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses. I. Optical breakdown at threshold and superthreshold irradiance
,”
IEEE J. Quantum Electron.
2
,
847
(
1996
).
67.
M.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Mech.
9
,
145
(
1977
).
68.
Y.
Tagawa
,
S.
Yamamoto
,
K.
Hayasaka
, and
M.
Kameda
, “
On pressure impulse of a laser-induced underwater shock wave
,”
J. Fluid Mech.
808
,
5
18
(
2016
).
69.
A.
Vogel
,
S.
Busch
, and
U.
Parlitz
, “
Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water
,”
J. Acoust. Soc. Am
100
,
148
(
1996
).
70.
J. R.
Blake
,
B. B.
Taib
, and
G.
Doherty
, “
Transient cavities near boundaries. Part 1. Rigid boundary
,”
J. Fluid Mech.
170
,
479
(
1986
).
71.
J. R.
Blake
,
B. B.
Taib
, and
G.
Doherty
, “
Transient cavities near boundaries. Part 2. Free surface
,”
J. Fluid Mech.
181
,
197
212
(
1987
).
72.
J. P.
Best
and
A.
Kucera
, “
A numerical investigation of non-spherical rebounding bubbles
,”
J. Fluid Mech.
245
,
137
154
(
1992
).
73.
J. R.
Blake
,
P. B.
Robinson
,
A.
Shima
, and
Y.
Tomita
, “
Interaction of two cavitation bubbles with a rigid boundary
,”
J. Fluid Mech.
255
,
707
(
1993
).
74.
Q. X.
Wang
,
K. S.
Yeo
,
B. C.
Khoo
, and
K. Y.
Lam
, “
Nonlinear interaction between gas bubble and free surface
,”
Comput. Fluids
25
,
607
(
1996
).
75.
P. B.
Robinson
,
J. R.
Blake
,
T.
Kodama
,
A.
Shima
, and
Y.
Tomita
, “
Interaction of cavitation bubbles with a free surface
,”
J. Appl. Phys.
89
,
8225
(
2001
).
76.
J. P.
Best
, “
The formation of toroidal bubbles upon the collapse of transient cavities
,”
J. Fluid Mech.
251
,
79
107
(
1993
).
77.
S.
Zhang
,
J. H.
Duncan
, and
G. L.
Chahine
, “
The final stage of the collapse of a cavitation bubble near a rigid wall
,”
J. Fluid Mech.
257
,
147
181
(
1993
).
78.
E. A.
Brujan
,
G. S.
Keen
,
A.
Vogel
, and
J. R.
Blake
, “
The final stage of the collapse of a cavitation bubble close to a rigid boundary
,”
Phys. Fluids
14
,
85
(
2002
).
79.
K. S.
Wang
,
Q. X.
Yeo
,
B. C.
Khoo
, and
K. Y.
Lam
, “
Vortex ring modelling of toroidal bubbles
,”
Theor. Comput. Fluid Dyn.
19
,
303
(
2005
).
80.
S.
Gekle
and
J. M.
Gordillo
, “
Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation
,”
J. Fluid Mech.
663
,
293
330
(
2010
).
81.
U.
Orthaber
,
J.
Zevnik
,
R.
Petkovšek
, and
M.
Dular
, “
Cavitation bubble collapse in a vicinity of a liquid-liquid interface—Basic research into emulsification process
,”
Ultrason. Sonochem.
68
,
105224
(
2020
).
82.
X.
Yang
,
C.
Liu
,
J.
Li
,
M.
Zhao
, and
C.
Hu
, “
Implosion of a bubble pair near a solid surface
,”
Phys. Rev. Fluids
8
,
023602
(
2023
).
83.
O.
Supponen
,
D.
Obreschkow
,
P.
Kobel
,
M.
Tinguely
,
N.
Dorsaz
, and
M.
Farhat
, “
Shock waves from nonspherical cavitation bubbles
,”
Phys. Rev. Fluids
2
,
093601
(
2017
).
You do not currently have access to this content.