High-speed video recording was used together with particle image velocimetry with tracer particles of titanium dioxide to study the characteristics of shifting and mixing of liquid layers in the coalescence, disruption, and separation of droplets. Convection velocities (Uc) were determined in droplets before and after their collisions. Vortex contours of different sizes and in different cross sections of droplets were derived. The average values of Uc were calculated. The effect of a group of factors on Uc was investigated. These factors include the relative velocity before the collision Urel, the ratio of droplet sizes Δ, the Weber number, the impact angle, and the rheological properties of liquid. Uc changed most significantly (more than threefold) from variations in Δ, Urel, and We. When varying the dimensionless linear interaction parameter B, Uc changed by 20%–40%. In disruption, Uc increased more than eightfold. In separation and coalescence, they increased by a factor of 10 and 11, respectively. The convection velocity was maximum after the collision. Then, 0.29–0.37 s after the collision, it fell to the values corresponding to a free-falling droplet. An increase in the convection velocity was compared for different droplet sizes and velocities before and after their interaction. Mathematical equations were obtained to predict the convection velocities affected by several investigated factors, taken separately or in combination. For the first time, the ranges of Uc were found, and the effect of a wide group of parameters (geometric sizes and velocities of droplets, rheological characteristics) on the velocities of convective flows was identified.

1.
J.
Li
and
P. B.
Weisensee
, “
Low Weber number droplet impact on heated hydrophobic surfaces
,”
Exp. Therm. Fluid Sci.
130
,
110503
(
2022
).
2.
H.
Zhang
,
X.
Zhang
,
X.
Yi
,
F.
He
,
F.
Niu
, and
P.
Hao
, “
Effect of wettability on droplet impact: Spreading and splashing
,”
Exp. Therm. Fluid Sci.
124
,
110369
(
2021
).
3.
A. G.
Islamova
,
P. P.
Tkachenko
,
N. E.
Shlegel
, and
P. A.
Strizhak
, “
Effect of surface roughness of solid particles on the regimes and outcomes of their collisions with liquid droplets
,”
Exp. Therm. Fluid Sci.
142
,
110829
(
2023
).
4.
J.
Zhang
,
P.
Liang
, and
Y.
Liu
, “
Impingement and breakup characteristics of free opposed impinging jets with unequal nozzle diameter
,”
Exp. Therm. Fluid Sci.
145
,
110884
(
2023
).
5.
R.
Bordás
,
T.
Hagemeier
,
B.
Wunderlich
, and
D.
Thévenin
, “
Droplet collisions and interaction with the turbulent flow within a two-phase wind tunnel
,”
Phys. Fluids
23
,
085105
(
2011
).
6.
Y.
Masato
,
K.
Nagase
,
Y.
Momose
, and
K.
Suzuki
, “
Flow and mixing dynamics in face-to-face and rear-end collisions of pairs of equal-sized droplets
,”
Phys. Fluids
35
,
083321
(
2023
).
7.
G.
Shu-Rong
,
J.
Jia-Xin
,
S.
Shi-Hua
,
W.
Bo-Jian
,
W.
Yi-Feng
,
Z.
Shao-Fei
,
Y.
Yan-Ru
, and
W.
Xiao-Dong
, “
Critical contact angle of a bouncing droplet
,”
Phys. Fluids
35
,
077123
(
2023
).
8.
D.
Chen
,
T.
Wang
,
L.
Ming
,
M.
Qiu
, and
Z.
Lin
, “
Dynamic characteristics of moving droplets impacting sessile droplets with different Reynolds numbers
,”
Phys. Fluids
34
,
117120
(
2022
).
9.
N. M.
Musehane
,
O. F.
Oxtoby
, and
B. D.
Reddy
, “
Multi-scale simulation of droplet–droplet interaction and coalescence
,”
J. Comput. Phys.
373
,
924
939
(
2018
).
10.
T.-C.
Gao
,
R.-H.
Chen
,
J.-Y.
Pu
, and
T.-H.
Lin
, “
Collision between an ethanol drop and a water drop
,”
Exp. Fluids
38
(
6
),
731
738
(
2005
).
11.
S.
Li
,
F.
Chu
,
J.
Zhang
,
D.
Brutin
, and
D.
Wen
, “
Droplet jumping induced by coalescence of a moving droplet and a static one: Effect of initial velocity
,”
Chem. Eng. Sci.
211
,
115252
(
2020
).
12.
Y.
Nishio
,
K.
Komori
,
S.
Izawa
, and
Y.
Fukunishi
, “
Simulation of collisions of two droplets containing two different liquids using incompressible smoothed particle hydrodynamics method
,”
Theor. Comput. Fluid Dyn.
34
(
1
),
105
117
(
2020
).
13.
K.-L.
Huang
,
K.-L.
Pan
, and
C.
Josserand
, “
Pinching dynamics and satellite droplet formation in symmetrical droplet collisions
,”
Phys. Rev. Lett.
123
(
23
),
234502
(
2019
).
14.
B.-F.
Bai
,
H.-B.
Zhang
,
L.
Liu
, and
H.-J.
Sun
, “
Experimental study on turbulent mixing of spray droplets in crossflow
,”
Exp. Therm. Fluid Sci.
33
(
6
),
1012
1020
(
2009
).
15.
W.
Liu
,
N.
Li
,
Z.
Sun
,
Z.
Wang
, and
Z.
Wang
, “
Droplet trajectories and collisions in gas forced vortexes: A molecular dynamics study
,”
Chem. Eng. Sci.
248
,
117242
(
2022
).
16.
M. A.
Khan
,
A.
Katoch
,
H.
Gadgil
, and
S.
Kumar
, “
First step towards atomization at ultra-low flow rates using conventional twin-fluid atomizer
,”
Exp. Therm. Fluid Sci.
109
,
109844
(
2019
).
17.
M.
Sommerfeld
and
L.
Pasternak
, “
Advances in modelling of binary droplet collision outcomes in Sprays: A review of available knowledge
,”
Int. J. Multiphase Flow
117
,
182
205
(
2019
).
18.
K. H.
Al-Dirawi
and
A. E.
Bayly
, “
An experimental study of binary collisions of miscible droplets with non-identical viscosities
,”
Exp. Fluids
61
(
2
),
50
(
2020
).
19.
C.
Planchette
,
S.
Petit
,
H.
Hinterbichler
, and
G.
Brenn
, “
Collisions of drops with an immiscible liquid jet
,”
Phys. Rev. Fluids
3
(
9
),
93603
(
2018
).
20.
H. L.
França
,
C. M.
Oishi
, and
R. L.
Thompson
, “
Numerical investigation of shear-thinning and viscoelastic binary droplet collision
,”
J. Non-Newtonian Fluid Mech.
302
,
104750
(
2022
).
21.
X.
Luo
,
K.
Xu
,
W.
Li
,
X.
Huang
, and
L.
He
, “
Mixing characteristics and energy conversion in the coalescence process of the two droplets
,”
Chem. Eng. Sci.
248
,
117153
(
2022
).
22.
N. X.
Ho
and
T. V.
Vu
, “
Numerical study of head-on collision of two equal-sized compound droplets
,”
Phys. Fluids
35
,
063320
(
2023
).
23.
P.
Geng
,
J.
Ma
,
X.
Chen
,
D.
Liu
,
S.
Pan
, and
C.
Liang
, “
Collision regimes and dynamic behaviors of a viscous droplet impacting on a spherical particle at high temperatures
,”
Phys. Fluids
35
,
033601
(
2023
).
24.
K.
Sun
,
P.
Zhang
,
M.
Jia
, and
T.
Wang
, “
Collision-induced jet-like mixing for droplets of unequal-sizes
,”
Int. J. Heat Mass Transfer
120
,
218
227
(
2018
).
25.
G. V.
Kuznetsov
,
N. E.
Shlegel
,
Y.
Solomatin
, and
P. A.
Strizhak
, “
Combined techniques of secondary atomization of multi-component droplets
,”
Chem. Eng. Sci.
209
,
115199
(
2019
).
26.
C.
Liu
,
K.
Wu
,
Z.
Zhang
,
Y.
Yuan
, and
X.
Fan
, “
Experimental study of the spray characteristics of twin-fluid atomization: Focusing on the annular flow regime
,”
Phys. Fluids
34
,
123309
(
2022
).
27.
K.-L.
Pan
,
K.-L.
Huang
,
W.-T.
Hsieh
, and
C.-R.
Lu
, “
Rotational separation after temporary coalescence in binary droplet collisions
,”
Phys. Rev. Fluids
4
(
12
),
123602
(
2019
).
28.
C.
Focke
,
M.
Kuschel
,
M.
Sommerfeld
, and
D.
Bothe
, “
Collision between high and low viscosity droplets: Direct Numerical Simulations and experiments
,”
Int. J. Multiphase Flow
56
,
81
92
(
2013
).
29.
G. V.
Kuznetsov
,
P. A.
Strizhak
, and
R. S.
Volkov
, “
Heat exchange of an evaporating water droplet in a high-temperature environment
,”
Int. J. Therm. Sci.
150
,
106227
(
2020
).
30.
S. Y.
Misyura
,
G. V.
Kuznetsov
,
R. S.
Volkov
,
S. I.
Lezhnin
, and
V. S.
Morozov
, “
The effect of impurity particles on the forced convection velocity in a drop
,”
Powder Technol.
362
,
341
349
(
2020
).
31.
S.
Shi
,
D.
Wang
,
Y.
Qian
,
X.
Sun
,
Y.
Liu
, and
A.
Tentner
, “
Liquid-phase turbulence measurements in air-water two-phase flows using particle image velocimetry
,”
Prog. Nucl. Energy
124
,
103334
(
2020
).
32.
A. K.
Jha
,
P.
Shukla
,
P. M.
Khisti
,
P.
Ghosh
, and
S. K.
Yadav
, “
Investigation of onset of velocity transition in free convection over an inclined flat plate by PIV
,”
Exp. Therm. Fluid Sci.
140
,
110764
(
2023
).
33.
Z.
Liu
,
M.
Li
,
Y.
Pang
,
L.
Zhang
,
Y.
Ren
, and
J.
Wang
, “
Flow characteristics inside droplets moving in a curved microchannel with rectangular section
,”
Phys. Fluids
31
,
022004
(
2019
).
34.
M.
Legrand
,
J.
Nogueira
,
P. A.
Rodriguez
,
A.
Lecuona
, and
R.
Jimenez
, “
Generation and droplet size distribution of tracer particles for PIV measurements in air, using propylene glycol/water solution
,”
Exp. Therm. Fluid Sci.
81
,
1
8
(
2017
).
35.
D.
Celik
and
S. W.
Van Sciver
, “
Tracer particle generation in superfluid helium through cryogenic liquid injection for particle image velocimetry (PIV) applications
,”
Exp. Therm. Fluid Sci.
26
(
8
),
971
975
(
2002
).
36.
H.
Zhang
,
B.
Bai
,
L.
Liu
,
H.
Sun
, and
J.
Yan
, “
Experimental study of the mixing of two impinging pressure-swirl sprays in crossflow
,”
Exp. Therm. Fluid Sci.
49
,
67
74
(
2013
).
37.
P. X.
Pham
,
A.
Kourmatzis
, and
A. R.
Masri
, “
Local characteristics of fragments in atomizing sprays
,”
Exp. Therm. Fluid Sci.
95
,
44
51
(
2018
).
38.
Z.
Sun
,
G.
Xi
, and
X.
Chen
, “
Mechanism study of deformation and mass transfer for binary droplet collisions with particle method
,”
Phys. Fluids
21
,
032106
(
2009
).
39.
S. Y.
Misyura
, “
Convection in a droplet blown by gas flow
,”
Appl. Therm. Eng.
165
,
114536
(
2020
).
40.
S.
Hosokawa
,
K.
Hayashi
, and
A.
Tomiyama
, “
Evaluation of adsorption of surfactant at a moving interface of a single spherical drop
,”
Exp. Therm. Fluid Sci.
96
,
397
405
(
2018
).
41.
B.
Carroll
and
C.
Hidrovo
, “
Droplet collision mixing diagnostics using single fluorophore LIF
,”
Exp. Fluids
53
(
5
),
1301
1316
(
2012
).
42.
P. P.
Tkachenko
,
N. E.
Shlegel
,
R. S.
Volkov
, and
P. A.
Strizhak
, “
Experimental study of miscibility of liquids in binary droplet collisions
,”
Chem. Eng. Res. Des.
168
,
1
12
(
2021
).
43.
N.
Nikolopoulos
,
K. S.
Nikas
, and
G.
Bergeles
, “
A numerical investigation of central binary collision of droplets
,”
Comput. Fluids
38
,
1191
(
2009
).
44.
B.
Carroll
and
C.
Hidrovo
, “
Experimental investigation of inertial mixing in colliding droplets
,”
Heat Transfer Eng.
34
,
120
130
(
2013
).
45.
Y.
Pan
and
K.
Suga
, “
Numerical simulation of binary liquid droplet collision
,”
Phys. Fluids
17
,
082105
(
2005
).
46.
R. S.
Volkov
and
P. A.
Strizhak
, “
Research of temperature fields and convection velocities in evaporating water droplets using planar laser-induced fluorescence and particle image velocimetry
,”
Exp. Therm. Fluid Sci.
97
,
392
407
(
2018
).
47.
F.
Yan
and
A.
Rinoshika
, “
High-speed PIV measurement of particle velocity near the minimum air velocity in a horizontal self-excited pneumatic conveying of using soft fins
,”
Exp. Therm. Fluid Sci.
44
,
534
543
(
2013
).
48.
A.
Melling
, “
Tracer particles and seeding for particle image velocimetry
,”
Meas. Sci. Technol.
8
(
12
),
1406
1416
(
1997
).
49.
J. G.
Santiago
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
(
4
),
316
319
(
1998
).
50.
R. S.
Volkov
,
G. V.
Kuznetsov
, and
P. A.
Strizhak
, “
Temperature and velocity fields of the gas-vapor flow near evaporating water droplets
,”
Int. J. Therm. Sci.
134
,
337
(
2018
).
51.
P. A.
Strizhak
,
R. S.
Volkov
,
S. Y.
Misyura
,
S. I.
Lezhnin
, and
V. S.
Morozov
, “
The role of convection in gas and liquid phases at droplet evaporation
,”
Int. J. Therm. Sci.
134
,
421
(
2018
).
52.
S. G.
Rabinovich
,
Measurement Errors and Uncertainties: Theory and Practice
(
Springer
,
2005
).
53.
R. S.
Volkov
,
G. V.
Kuznetsov
, and
P. A.
Strizhak
, “
Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas
,”
Int. J. Heat Mass Transfer
85
,
1
11
(
2015
).
54.
R. S.
Volkov
and
P. A.
Strizhak
, “
Planar laser-induced fluorescence diagnostics of water droplets heating and evaporation at high-temperature
,”
Appl. Therm. Eng.
127
,
141
156
(
2017
).
55.
P. A.
Strizhak
and
R. S.
Volkov
, “
The integral characteristics of the deceleration and entrainment of water droplets by the counter flow of high-temperature combustion products
,”
Exp. Therm. Fluid Sci.
75
,
54
65
(
2016
).
You do not currently have access to this content.