Inspired by the energy-saving character of group motion, great interest is directed toward the design of efficient swarming strategies for groups of unmanned aerial/underwater vehicles. While most of the current research on drone swarms addresses controls, communication, and mission planning, less effort is put toward understanding the physics of the flow around the members of the group. Currently, a large variety of drones and underwater vehicles consist of non-lifting frames for which the available formation flight strategies based on lift-induced upwash are not readily applicable. Here, we explore the V-formations of non-lifting objects and discuss how such a configuration alters the flow field around each member of the array compared to a solo flyer and how these changes in flow physics affect the drag force experienced by each member. Our measurements are made in a water tunnel using a multi-illumination particle image velocimetry technique where we find that in formations with an overlap in streamwise projections of the members, all the members experience a significant reduction in drag, with some members seeing as much as 45% drag reduction. These findings are instrumental in developing generalized energy-saving swarming strategies for aerial and underwater vehicles irrespective of the body shapes.

1.
A.
Cavagna
,
D.
Conti
,
C.
Creato
,
L.
Del Castello
,
I.
Giardina
,
T. S.
Grigera
,
S.
Melillo
,
L.
Parisi
, and
M.
Viale
, “
Dynamic scaling in natural swarms
,”
Nat. Phys.
13
(
9
),
914
918
(
2017
).
2.
A.
Attanasi
,
A.
Cavagna
,
L.
Del Castello
,
I.
Giardina
,
S.
Melillo
,
L.
Parisi
,
O.
Pohl
,
B.
Rossaro
,
E.
Shen
,
E.
Silvestri
et al, “
Collective behaviour without collective order in wild swarms of midges
,”
PLoS Comput. Biol.
10
(
7
),
e1003697
(
2014
).
3.
J. F.
Méndez-Valderrama
,
Y. A.
Kinkhabwala
,
J.
Silver
,
I.
Cohen
, and
T. A.
Arias
, “
Density-functional fluctuation theory of crowds
,”
Nat. Commun.
9
(
1
),
3538
(
2018
).
4.
S. J.
Portugal
,
T. Y.
Hubel
,
J.
Fritz
,
S.
Heese
,
D.
Trobe
,
B.
Voelkl
,
S.
Hailes
,
A. M.
Wilson
, and
J. R.
Usherwood
, “
Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight
,”
Nature
505
(
7483
),
399
402
(
2014
).
5.
L. L.
Gould
and
F.
Heppner
, “
The Vee formation of Canada geese
,”
Auk
91
,
494
506
(
1974
).
6.
R. M.
May
, “
Flight formations in geese and other birds
,”
Nature
282
(
5741
),
778
780
(
1979
).
7.
C.
Cutts
and
J.
Speakman
, “
Energy savings in formation flight of pink-footed geese
,”
J. Exp. Biol.
189
(
1
),
251
261
(
1994
).
8.
H.
Weimerskirch
,
J.
Martin
,
Y.
Clerquin
,
P.
Alexandre
, and
S.
Jiraskova
, “
Energy saving in flight formation
,”
Nature
413
,
697
698
(
2001
).
9.
M.
Nagy
,
Z.
Ákos
,
D.
Biro
, and
T.
Vicsek
, “
Hierarchical group dynamics in pigeon flocks
,”
Nature
464
(
7290
),
890
893
(
2010
).
10.
J. C.
Liao
,
D. N.
Beal
,
G. V.
Lauder
, and
M. S.
Triantafyllou
, “
Fish exploiting vortices decrease muscle activity
,”
Science
302
(
5650
),
1566
1569
(
2003
).
11.
Y.
Zhang
and
G. V.
Lauder
, “
Energy conservation by group dynamics in schooling fish
,”
eLife
12
,
RP90352
(
2023
).
12.
H.
Ko
,
G.
Lauder
, and
R.
Nagpal
, “
The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots
,”
J. R. Soc. Interface
20
,
20230357
(
2023
).
13.
S.
Ito
and
N.
Uchida
, “
Vortex phase matching of a self-propelled model of fish with autonomous fin motion
,”
Phys. Fluids
35
,
111902
(
2023
).
14.
I. D.
Couzin
,
J.
Krause
,
N. R.
Franks
, and
S. A.
Levin
, “
Effective leadership and decision-making in animal groups on the move
,”
Nature
433
(
7025
),
513
516
(
2005
).
15.
A.
Kazemi
,
K. V.
de Riet
, and
O. M.
Curet
, “
Drag coefficient and flow structure downstream of mangrove root-type models through PIV and direct force measurements
,”
Phys. Rev. Fluids
3
,
073801
(
2018
).
16.
M.
Gymnopoulos
,
A. M.
Ricardo
,
E.
Alves
, and
R. M. L.
Ferreira
, “
A circular cylinder in the main-channel/floodplain interface of a compound channel: Effect of the shear flow on drag and lift
,”
J. Hydraul. Res.
58
,
420
433
(
2019
).
17.
A.
Kazemi
,
L.
Castillo
, and
O. M.
Curet
, “
Mangrove roots model suggest an optimal porosity to prevent erosion
,”
Sci. Rep.
11
,
9969
(
2021
).
18.
M.
Liu
,
W.
Huai
,
B.
Ji
, and
P.
Han
, “
Numerical study on the drag characteristics of rigid submerged vegetation patches
,”
Phys. Fluids
33
,
085123
(
2021
).
19.
R. M. L.
Ferreira
,
M.
Gymnopoulos
,
P.
Prinos
,
E.
Alves
, and
A. M.
Ricardo
, “
Drag on a square-cylinder array placed in the mixing layer of a compound channel
,”
Water
13
,
3225
(
2021
).
20.
A. T.
Sayers
, “
Flow interference between three equispaced cylinders when subjected to a cross flow
,”
J. Wind Eng. Ind. Aerodyn.
26
(
1
),
1
19
(
1987
).
21.
G.
Stanescu
,
A. J.
Fowler
, and
A.
Bejan
, “
The optimal spacing of cylinders in free-stream cross-flow forced convection
,”
Int. J. Heat Mass Transfer
39
(
2
),
311
317
(
1996
).
22.
R.
Kumar
and
N. K.
Singh
, “
Three dimensional flow over elliptic cylinders arrays in octagonal arrangement
,”
J. Therm. Eng.
7
,
2031
2040
(
2021
).
23.
O.
Yagci
,
O.
Karabay
, and
K.
Strom
, “
Bleed flow structure in the wake region of finite array of cylinders acting as an alternative supporting structure for foundation
,”
J. Ocean Eng. Mar. Energy
7
,
379
403
(
2021
).
24.
D.
Gary
, see https://www.britannica.com/technology/formation-flying for “
Formation flying
” (
2020
).
25.
Airbus
, see https://www.youtube.com/watch?v=H1dr9Cxf85k for “
The airbus fello'fly demonstrator
2020
.
26.
B.
Blocken
,
T.
van Druenen
,
Y.
Toparlar
,
F.
Malizia
,
P.
Mannion
,
T.
Andrianne
,
T.
Marchal
,
G.-J.
Maas
, and
J.
Diepens
, “
Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing
,”
J. Wind Eng. Ind. Aerodyn.
179
,
319
337
(
2018
).
27.
G. P.
Millet
,
R.
Geslan
,
R.
Ferrier
,
R.
Candau
, and
A.
Varray
, “
Effects of drafting on energy expenditure in in-line skating
,”
J. Sports Med. Phys. Fitness
43
(
3
),
285
290
(
2003
).
28.
J.
Gautrais
,
F.
Ginelli
,
R.
Fournier
,
S.
Blanco
,
M.
Soria
,
H.
Chaté
, and
G.
Theraulaz
, “
Deciphering interactions in moving animal groups
,”
PLoS Comput. Biol.
8
(9),
e1002678
(
2012
).
29.
N. E.
Leonard
,
T.
Shen
,
B.
Nabet
,
L.
Scardovi
,
I. D.
Couzin
, and
S. A.
Levin
, “
Decision versus compromise for animal groups in motion
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
1
),
227
232
(
2012
).
30.
H.
Ling
,
G. E.
Mclvor
,
K.
van der Vaart
,
R. T.
Vaughan
,
A.
Thornton
, and
N. T.
Ouellette
, “
Costs and benefits of social relationships in the collective motion of bird flocks
,”
Nat. Ecol. Evol.
3
(
6
),
943
948
(
2019
).
31.
F. J. H.
Heras
,
F.
Romero-Ferrero
,
R. C.
Hinz
, and
G. G.
de Polavieja
, “
Deep attention networks reveal the rules of collective motion in zebrafish
,”
PLoS Comput. Biol.
15
(
9
),
e1007354
(
2019
).
32.
Y.
Pan
and
H.
Dong
, “
Computational analysis of hydrodynamic interactions in a high-density fish school
,”
Phys. Fluids
32
(
12
),
121901
(
2020
).
33.
Y.
Pan
and
H.
Dong
, “
Effects of phase difference on hydrodynamic interactions and wake patterns in high-density fish schools
,”
Phys. Fluids
34
(
11
),
111902
(
2022
).
34.
P. B. S.
Lissaman
and
C. A.
Shollenberger
, “
Formation flight of birds
,”
Science
168
(
3934
),
1003
1005
(
1970
).
35.
D.
Hummel
, “
Aerodynamic aspects of formation flight in birds
,”
J. Theor. Biol.
104
,
321
347
(
1983
).
36.
D.
Hummel
, “
The use of aircraft wakes to achieve power reductions in formation flight
,” in The Characterisation and Modification of Wakes from Lifting Vehicles in Fluids, Vol. AGARD-CP-584 (NATO, 1996).
37.
W.
Blake
and
D.
Multhopp
, “
Design, performance and modeling considerations for close formation flight
,” AIAA Paper No. 98-4343,
1998
.
38.
D.
Jacques
,
M.
Pachter
,
G.
Wagner
, and
B.
Blake
, “
An analytical study of drag reduction in tight formation flight
,” AIAA Paper No. 2001-4075,
2001
.
39.
H.
Kawabe
, “
A study on optimal pattern and leader shift of formation flight
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
50
(
168
),
134
140
(
2007
).
40.
J.
Xu
,
S.
Andrew Ning
,
G.
Bower
, and
I.
Kroo
, “
Aircraft route optimization for formation flight
,”
J. Aircr.
51
(
2
),
490
501
(
2014
).
41.
S. A.
Ning
,
T. C.
Flanzer
, and
I. M.
Kroo
, “
Aerodynamic performance of extended formation flight
,”
J. Aircr.
48
(
3
),
855
865
(
2011
).
42.
G.
Bower
,
T.
Flanzer
, and
I.
Kroo
, “
Formation geometries and route optimization for commercial formation flight
,” AIAA Paper No. 2009-3615,
2009
.
43.
M.
Andersson
and
J.
Wallander
, “
Kin selection and reciprocity in flight formation?
,”
Behav. Ecol.
15
(
1
),
158
162
(
2004
).
44.
R. G.
Bill
and
W. F.
Herrnkind
, “
Drag reduction by formation movement in spiny lobsters
,”
Science
193
(
4258
),
1146
1148
(
1976
).
45.
R.
Liu
,
Z.
Cai
,
M.
Lewis
,
J.
Lyons
, and
K.
Sycara
, “
Trust repair in human-swarm teams+
,” in
28th IEEE International Conference on Robot and Human Interactive Communication
(
IEEE
,
2019
).
46.
M.
Campion
,
P.
Ranganathan
, and
S.
Faruque
, “
A review and future directions of uav swarm communication architectures
,” in
IEEE International Conference on Electro/Information Technology (EIT)
(
IEEE
,
2018
).
47.
M.
Bacco
,
S.
Chessa
,
M.
Di Benedetto
,
D.
Fabbri
,
M.
Girolami
,
A.
Gotta
,
D.
Moroni
,
M. A.
Pascali
, and
V.
Pellegrini
, “
UAVs and UAV swarms for civilian applications: Communications and image processing in the SCIADRO project
,” in
International Conference on Wireless and Satellite Systems (SiSATS 2017),
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Vol. 231 (
Springer
,
2017
), pp.
115
124
.
48.
H.
Duan
,
Z.
Wang
,
Y.
Liu
,
X.
Li
,
H.
Huang
, and
H.
Zhao
, “
IWCA algorithm for clustered drone information transmission network
,” in 5th International Conference on Soft Computing & Machine Intelligence (ISCMI),
2018
.
49.
Y.
Wei
,
M. B.
Blake
, and
G. R.
Madey
, “
An operation-time simulation framework for UAV swarm configuration and mission planning
,”
Procedia Comput. Sci.
18
,
1949
1958
(
2013
).
50.
R.
Nagasawa
,
E.
Mas
,
L.
Moya
, and
S.
Koshimura
, “
Model-based analysis of multi-UAV path planning for surveying postdisaster building damage
,”
Sci. Rep.
11
(
1
),
18588
(
2021
).
51.
M.
Abdelkader
,
S.
Guler
,
H.
Jaleel
, and
J. S.
Shamma
, “
Aerial swarms: Recent applications and challenges
,”
Curr. Rob. Rep.
2
,
309
320
(
2021
).
52.
G.
Asaamoning
,
P.
Mendes
,
D.
Rosario
, and
E.
Cerqueira
, “
Drone swarms as networked control systems by integration of networking and computing
,”
Sensors
21
,
2642
2623
(
2021
).
53.
M.
Abdelkader
,
M.
Shaqura
,
M.
Ghommem
,
N.
Collier
,
V.
Calo
, and
C.
Claudel
, “
Optimal multi-agent path planning for fast inverse modeling in UAV-based flood sensing applications
,” in
International Conference on Unmanned Aircraft Systems (ICUAS)
,
2014
.
54.
S.
Guo
,
B.
Alkouz
,
B.
Shahzaad
,
A.
Lakhdari
, and
A.
Bouguettaya
, “
Drone formation for efficient swarm energy consumption
,” in
IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops): Demos
(IEEE,
2023
).
55.
A. M.
Ricardo
,
P. M.
Sanches
, and
R. M. L.
Ferreira
, “
Vortex shedding and vorticity fluxes in the wake of cylinders within a random array
,”
J. Turbul.
17
,
999
1014
(
2016
).
56.
A.
Nair
,
A.
Kazemi
,
O.
Curet
, and
S.
Verma
, “
Porous cylinder arrays for optimal wake and drag characteristics
,”
J. Fluid Mech.
961
,
A18
(
2023
).
57.
K.
Chang
and
G.
Constantinescu
, “
Numerical investigation of flow and turbulence structure through and around a circular array of rigid cylinders
,”
J. Fluid Mech.
776
,
161
199
(
2015
).
58.
T.
Tang
,
P.
Yu
,
X.
Shan
,
J.
Li
, and
S.
Yu
, “
On the transition behavior of laminar flow through and around a multi-cylinder array
,”
Phys. Fluids
32
,
013601
(
2020
).
59.
M. S.
Bansal
and
S.
Yarusevych
, “
Experimental study of flow through a cluster of three equally spaced cylinders
,”
Exp. Therm. Fluid Sci.
80
,
203
217
(
2017
).
60.
M. A.
Northrup
,
T. J.
Kulp
, and
S. M.
Angel
, “
Fluorescent particle image velocimetry: Application to flow measurement in refractive index-matched porous media
,”
Appl. Opt.
30
(
21
),
3034
3040
(
1991
).
61.
R.
Hafeli
,
M.
Altheimer
,
D.
Butscher
, and
P. R.
von Rohr
, “
PIV study of flow through porous structure using refractive index matching
,”
Exp. Fluids
55
,
1717
(
2014
).
62.
D.
Fan
,
R.
Li
,
M.
He
,
X.
Li
,
J.
Li
,
J.
Wen
,
Y.
Hu
,
Y.
Li
,
Y.
Li
,
L.
Gu
, and
Z.
Li
, “
Review of refractive index-matching techniques of polymethyl methacrylate in flow field visualization experiments
,”
Int. J. Energy Res.
2023
,
3413380
.
63.
S.
Fu
,
P.
Suchandra
, and
S.
Raayai-Ardakani
, “
Multi-sheet illumination and consecutive overlapping 2D-2C PIV acquisition for enhanced access to boundary layer flows around obstructive opaque objects
,” in
Proceedings of the 15th International Symposium on Particle Image Velocimetry (ISPIV 2023) Held at San Diego State University
,
San Diego, CA
, 19–21 June 2023.
64.
S.
Fu
and
S.
Raayai-Ardakani
, “
Double-light-sheet, consecutive-overlapping particle image velocimetry for the study of boundary layers past opaque objects
,”
Exp. Fluids
64
,
182
(
2023
).
65.
J. H.
Lienhard
,
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
(
Technical Extension Service, Washington State University
,
1966
).
66.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 4th ed. (
Academic Press
,
2008
).
67.
A.
Liberzon
,
D.
Lasagna
,
M.
Aubert
,
P.
Bachant
,
T.
Käufer
,
jakirkham
,
A.
Bauer
,
B.
Vodenicharski
,
C.
Dallas
,
J.
Borg
,
tomerast
, and
ranleu
(
2020
). “OpenPIV/openpiv-python: OpenPIV – Python (v0.22.2) with a new extended search PIV grid option,”
Zenodo
, V0.22.2,
68.
J.
Westerweel
and
F.
Scarano
, “
Universal outlier detection for PIV data
,”
Exp. Fluids
39
,
1096
1100
(
2005
).
69.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
,
074002
(
2015
).
70.
A.
Sciacchitano
and
B.
Wieneke
, “
PIV uncertainty propagation
,”
Meas. Sci. Technol.
27
,
084006
(
2016
).
71.
C. E.
Shannon
, “
Communication in the presence of noise
,” in
Proceedings of the Institute of Radio Engineers
,
1949
.
72.
X.
Liu
and
J.
Katz
, “
Instantaneous pressure and material acceleration measurements using a four-exposure PIV system
,”
Exp. Fluids
41
,
227
240
(
2006
).
73.
J. J.
Charonko
,
C. V.
King
,
B. L.
Smith
, and
P. P.
Vlachos
, “
Assessment of pressure field calculations from particle image velocimetry measurements
,”
Meas. Sci. Technol.
21
,
105401
(
2010
).
74.
R.
de Kat
and
B.
Ganapathisubramani
, “
Pressure from particle image velocimetry for convective flows: A Taylor's hypothesis approach
,”
Meas. Sci. Technol.
24
,
024002
(
2013
).
75.
B. W.
van Oudheusden
, “
PIV-based pressure measurement
,”
Meas. Sci. Technol.
24
,
032001
(
2013
).
76.
X.
Liu
,
J. R.
Moreto
, and
S.
Siddle-Mitchell
, “
Instantaneous pressure reconstruction from measured pressure gradient using rotating parallel ray method
,” AIAA Paper No. 2016-1049, 2016.
77.
X.
Liu
and
J. R.
Moreto
, “
Error propagation from the PIV-based pressure gradient to the integrated pressure by the omnidirectional integration method
,”
Meas. Sci. Technol.
31
,
055301
(
2020
).
78.
M.
Nie
,
J. P.
Whitehead
,
G.
Richards
,
B. L.
Smith
, and
Z.
Pan
, “
Error propagation dynamics of PIV-based pressure field calculation (3): What is the minimum resolvable pressure in a reconstructed field?
,”
Exp. Fluids
63
,
168
(
2022
).
79.
H.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
, 1st ed. (
MIT Press
,
1972
).
80.
S. B.
Pope
,
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
2000
).
81.
R. J.
Adrian
, “
Particle-imaging techniques for experimental fluid mechanics
,”
Annu. Rev. Fluid Mech.
23
,
261
304
(
1991
).
82.
M.
Raffel
,
C. E.
Willert
,
F.
Scarano
,
C. J.
Kahler
,
S. T.
Wereley
, and
J.
Kompenhans
,
Particle Image Velocimetry
, 3rd ed. (
Springer International Publishing
,
2018
).
83.
G.
Chopra
and
S.
Mittal
, “
Drag coefficient and formation length at the onset of vortex shedding
,”
Phys. Fluids
31
,
013601
(
2019
).
84.
M. F.
Unal
and
D.
Rockwell
, “
On vortex formation from a cylinder. Part 1. The initial instability
,”
J. Fluid Mech.
190
,
491
512
(
1988
).
85.
C.
Wieselsberger
, “
New data on the laws of fluid resistance
,” NACA Technical Note No. 84,
1922
.
86.
F. M.
White
,
Viscous Fluid Flow
(
McGraw-Hill
,
New York
,
1991
).
87.
B. R.
Munson
,
T. H.
Okiishi
,
W. W.
Huebsch
, and
A. P.
Rothmayer
,
Fundamentals of Fluid Mechanics
, 7th ed. (
Wiley
,
2013
).
88.
J.
Zhou
and
S. K.
Venayagamoorthy
, “
Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water
,”
J. Fluid Mech.
858
,
634
655
(
2019
).
89.
C.
Nicolai
,
S.
Taddei
,
C.
Manes
, and
B.
Ganapathisubramani
, “
Wakes of wall-bounded turbulent flows past patches of circular cylinders
,”
J. Fluid Mech.
892
,
A37
(
2020
).
90.
K.
Lam
and
W. C.
Cheung
, “
Phenomenon of vortex shedding and flow interference of three cylinders in different equilateral arrangements
,”
J. Fluid Mech.
196
,
1
26
(
1988
).
91.
B. R.
Noack
,
W.
Stankiewicz
,
M.
Morzynski
, and
P. J.
Schmid
, “
Recursive dynamic mode decomposition of a transient cylinder wake
,”
J. Fluid Mech.
809
,
843
872
(
2016
).
92.
N.
Deng
,
B. R.
Noack
,
M.
Morzynski
, and
L. R.
Pastur
, “
Low-order model for successive bifurcations of the fluidic pinball
,”
J. Fluid Mech.
884
,
A37
(
2020
).
93.
N.
Deng
,
B. R.
Noack
,
M.
Morzynski
, and
L. R.
Pastur
, “
Galerkin force model for transient and post-transient dynamics of the fluidic pinball
,”
J. Fluid Mech.
918
,
A4
(
2021
).
94.
C. H. K.
Williamson
, “
Vortex dynamics in the cylinder wake
,”
Annu. Rev. Fluid Mech.
28
,
477
539
(
1996
).
You do not currently have access to this content.