Four-dimensional flow magnetic resonance imaging (4D flow MRI) offers a powerful tool for visualizing fluid flows, critical for both diagnosing cardiovascular diseases and analyzing engineering fluid dynamics. Despite its potential in medical research, the clinical applicability of 4D flow MRI often faces challenges due to inherent noise. To mitigate this, we introduce the split-and-overlap singular value decomposition (SOSVD) filter, a distinctive noise reduction approach. Unlike traditional singular value decomposition methods, the SOSVD filter partitions the primary data matrix into overlapping subdomains and then applies singular value decomposition to each subdomain, preserving only the dominant mode for noise attenuation. Evaluations on simulated and experimental flow data within a square duct revealed a significant decrease in root mean square noise metrics. Moreover, when applied to in vivo aortic data, the SOSVD filter enhanced various flow determinants, including divergence, velocity gradients, streamlines, and velocity coherence. Thus, the SOSVD method presents a promising avenue for augmenting noise reduction in 4D flow MRI, potentially elevating diagnostic accuracy and enriching cardiovascular disease research.

1.
M. S. M.
Elbaz
,
R. J.
van der Geest
,
E. E.
Calkoen
et al, “
Assessment of viscous energy loss and the association with three‐dimensional vortex ring formation in left ventricular inflow: In vivo evaluation using four‐dimensional flow MRI
,”
Magn. Reson. Med.
77
,
794
(
2017
).
2.
H.
Ha
,
J. P. E.
Kvitting
,
P.
Dyverfeldt
et al, “
4D Flow MRI quantification of blood flow patterns, turbulence and pressure drop in normal and stenotic prosthetic heart valves
,”
Magn. Reson. Med.
55
,
118
(
2019
).
3.
M. J.
Cha
,
D. G.
An
,
M.
Kang
et al, “
Correct closure of the left atrial appendage reduces stagnant blood flow and the risk of thrombus formation: A proof-of-concept experimental study using 4D flow magnetic resonance imaging
,”
Korean J. Radiol.
24
,
647
(
2023
).
4.
D. S.
Goolaub
,
J.
Xu
, and
E. M.
Schrauben
, “
Volumetric fetal flow imaging with magnetic resonance imaging
,”
IEEE Trans. Med. Imaging
41
,
2941
(
2022
).
5.
M.
Markl
,
W.
Wallis
, and
A.
Harloff
, “
Reproducibility of flow and wall shear stress analysis using flow‐sensitive four‐dimensional MRI
,”
Magn. Reson. Imaging
33
,
988
(
2011
).
6.
P.
Corso
,
G.
Giannakopoulos
,
U.
Gülan
et al, “
A novel estimation approach of pressure gradient and haemodynamic stresses as indicators of pathological aortic flow using subvoxel modelling
,”
IEEE Trans. Biomed. Eng.
68
,
980
(
2021
).
7.
D. P.
Lum
,
K. M.
Johnson
, and
R. K.
Paul
, “
Transstenotic pressure gradients: Measurement in swine-retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewire
,”
Radiology
245
,
751
(
2007
).
8.
F.
Donati
,
C. A.
Figueroa
,
N. P.
Smith
et al, “
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
,”
Med. Image Anal.
26
,
159
(
2015
).
9.
A. J.
Barker
,
P.
Van Ooij
,
K.
Bandi
, et al, “
Viscous energy loss in the presence of abnormal aortic flow
,”
Magn. Reson. Med.
72
,
620
(
2014
).
10.
J.
Zajac
,
J.
Eriksson
,
P.
Dyverfeldt
et al, “
Turbulent kinetic energy in normal and myopathic left ventricles
,”
Magn. Reson. Imaging
41
,
1021
(
2015
).
11.
L.
Goubergrits
,
E.
Riesenkampff
,
P.
Yevtushenko
et al, “
MRI‐based computational fluid dynamics for diagnosis and treatment prediction: Clinical validation study in patients with coarctation of aorta
,”
Magn. Reson. Imaging
41
,
909
(
2015
).
12.
C. W.
Ong
,
I.
Wee
,
N.
Syn
et al, “
Computational fluid dynamics modeling of hemodynamic parameters in the human diseased aorta: A systematic review
,”
Ann. Vasc. Surg.
63
,
336
(
2020
).
13.
A. G.
Fredriksson
,
E.
Svalbring
,
J.
Eriksson
et al, “
4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease
,”
Magn. Reson. Imaging
43
,
558
(
2016
).
14.
S.
Shalhub
,
M.
Schäfer
,
T. S.
Hatsukami
et al, “
Association of variant arch anatomy with type B aortic dissection and hemodynamic mechanisms
,”
J. Vasc. Surg.
68
,
1640
(
2018
).
15.
A.
Frydrychowicz
,
A.
Berger
,
A.
Munoz del Rio
et al, “
Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla
,”
Eur. Radiol.
22
,
1122
(
2012
).
16.
T. A.
Hope
,
M.
Markl
,
L.
Wigström
et al, “
Comparison of flow patterns in ascending aortic aneurysms and volunteers using four‐dimensional magnetic resonance velocity mapping
,”
Magn. Reson. Imaging
26
,
1471
(
2007
).
17.
M. D.
Hope
,
A. K.
Meadows
,
T. A.
Hope
et al, “
Clinical evaluation of aortic coarctation with 4D flow MR imaging
,”
Magn. Reson. Imaging
31
,
711
(
2010
).
18.
H.
Gunes
and
U.
Rist
, “
Spatial resolution enhancement/smoothing of stereo–particle-image-velocimetry data using proper-orthogonal-decomposition–based and Kriging interpolation methods
,”
Phys. Fluids
19
,
064101
(
2007
).
19.
J.
Zimmermann
,
D.
Demedts
,
H.
Mirzaee
et al, “
Wall shear stress estimation in the aorta: Impact of wall motion, spatiotemporal resolution, and phase noise
,”
Magn. Reson. Imaging
48
,
718
(
2018
).
20.
S.
Ko
,
B.
Yang
, and
J. H.
Cho
, “
Novel and facile criterion to assess the accuracy of WSS estimation by 4D flow MRI
,”
Med. Image Anal.
53
,
95
(
2019
).
21.
S. C.
Kale
,
X. J.
Chen
, and
R. M.
Henkelman
, “
Trading off SNR and resolution in MR images
,”
NMR Biomed.
22
,
488
(
2009
).
22.
A. G.
Morgan
,
M. J.
Thrippleton
,
J. M.
Wardlaw
et al, “
4D flow MRI for non-invasive measurement of blood flow in the brain: A systematic review
,”
J. Cereb. Blood Flow Metab.
41
,
206
(
2021
).
23.
J.
Zhang
,
S. M.
Rothenberger
, and
M. C.
Brindise
, “
Divergence-free constrained phase unwrapping and denoising for 4D flow MRI using weighted least-squares
,”
IEEE Trans. Med. Imaging
40
,
3389
(
2021
).
24.
C. M.
de Silva
,
J.
Philip
, and
I.
Marusic
, “
Minimization of divergence error in volumetric velocity measurements and implications for turbulence statistics
,”
Exp. Fluids
54
,
1557
(
2013
).
25.
J.
Mura
,
A. M.
Pino
,
J.
Sotelo
et al, “
Enhancing the velocity data from 4D flow MR images by reducing its divergence
,”
IEEE Trans. Med. Imaging
35
,
2353
(
2016
).
26.
C.
Wang
,
Q.
Gao
,
H.
Wang
et al, “
Divergence-free smoothing for volumetric PIV data
,”
Exp. Fluids
57
(
1
),
15
(
2016
).
27.
Q.
Guo
,
C.
Zhang
,
Y.
Zhang
et al, “
An efficient SVD-based method for image denoising
,”
IEEE Trans. Circuits Syst. Video Technol.
26
,
868
(
2016
).
28.
J.
Wang
,
J. X.
Meng
,
L.
Guo
et al, “
A correlation-based approach for determining the threshold value of singular value decomposition filtering for potential field data denoising
,”
J. Geophys. Eng.
11
,
055007
(
2014
).
29.
B. P.
Epps
and
A. H.
Techet
, “
An error threshold criterion for singular value decomposition modes extracted from PIV data
,”
Exp. Fluids
48
,
355
(
2010
).
30.
M.
Raiola
,
S.
Discetti
, and
A.
Ianiro
, “
On PIV random error minimization with optimal POD-based low-order reconstruction
,”
Exp. Fluids
56
,
75
(
2015
).
31.
M. C.
Brindise
and
P. P.
Vlachos
, “
Proper orthogonal decomposition truncation method for data denoising and order reduction
,”
Exp. Fluids
58
,
28
(
2017
).
32.
B. P.
Epps
and
E. M.
Krivitzky
, “
Singular value decomposition of noisy data: Noise filtering
,”
Exp. Fluids
60
,
126
(
2019
).
33.
R.
McConkey
,
E.
Yee
, and
F. S.
Lien
, “
A curated dataset for data-driven turbulence modelling
,”
Sci. Data
8
,
255
(
2021
).
34.
X.
Zhu
,
B.
Tomanek
, and
J.
Sharp
, “
A pixel is an artifact: On the necessity of zero‐filling in Fourier imaging
,”
Concepts Magn. Reson.
42A
,
32
(
2013
).
35.
H.
Ha
,
H. K.
Huh
,
K. J.
Park
et al, “
In-vitro and in-vivo assessment of 4D flow MRI Reynolds stress mapping for pulsatile blood flow
,”
Front. Bioeng. Biotechnol.
9
,
774954
(
2021
).
36.
D.
Nolte
,
J.
Urbina
, and
J.
Sotelo
, “
Validation of 4D flow based relative pressure maps in aortic flows
,”
Med. Image Anal.
74
,
102195
(
2021
).
You do not currently have access to this content.