In response to the need for efficient, small-scale power sources for applications such as ocean observation and navigation, this paper presents the design, modeling, fabrication, testing, and analysis of a compact point-absorber wave energy converter (PAWEC) equipped with a mechanical direct-drive power takeoff (PTO) mechanism. The motivation is to address the mismatch between the natural frequencies of conventional PAWECs and dominant ocean wave frequencies, which limits energy capture. The primary objective is to enhance the efficiency of small-scale wave energy converters (WEC) without increasing the buoy size. To achieve this, we introduce a novel design element: an added mass plate (AMP) attached to the buoy. The AMP is devised to increase the WEC added mass and natural period, thereby aligning its natural frequency with dominant ocean wave frequencies. In our case study of a scaled model (1:2.2), the AMP effectively doubled the added mass of the WEC and increased its natural period by 32%. The WEC incorporates a rack and pinion mechanical motion rectifier-type PTO to convert the heave oscillations of the buoy into unidirectional rotation. The scaled model was tested in a wave basin facility with regular waves at zero angle of incidence. The WEC with AMP achieved a maximum root mean square power of 9.34 W, a nearly 30% increase compared to the conventional configuration without AMP, which produced 7.12 W under similar wave conditions. Numerical analysis using the boundary element method in the frequency domain for regular waves confirmed these findings. Finally, it has been derived that the proposed WEC, equipped with an AMP, offers enhanced efficiency in longer wave periods without the need for a larger buoy, establishing its viability as a power source for navigational buoys. This paper also offers a comprehensive guide to experimental techniques for characterizing a PAWEC in a laboratory setting, contributing valuable insights into the wave energy community.

1.
T. K.
Das
,
K.
Kumar
, and
A.
Samad
, “
Experimental analysis of a biplane wells turbine under different load conditions
,”
Energy
206
,
118205
(
2020
).
2.
P.
Halder
,
H.
Takebe
,
K.
Pawitan
,
J.
Fujita
,
S.
Misumi
, and
T.
Shintake
, “
Turbine characteristics of wave energy conversion device for extraction power using breaking waves
,”
Energies
13
,
966
(
2020
).
3.
S.
Ravikumar
,
R.
Anandanarayanan
,
A.
George
,
B.
Pattanaik
,
P. V.
Dudhgaonkar
,
P.
Jalihal
et al, “
Experimental investigation of a bidirectional impulse turbine for oscillating flows at various resistive loads
,”
IEEE J. Oceanic Eng.
46
,
115
131
(
2021
).
4.
A. F. d. O.
Falcão
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
,
899
918
(
2010
).
5.
T.
Aderinto
and
H.
Li
, “
Ocean Wave energy converters: Status and challenges
,”
Energies
11
,
1250
(
2018
).
6.
B.
Guo
and
J. V.
Ringwood
, “
Geometric optimisation of wave energy conversion devices: A survey
,”
Appl. Energy
297
,
117100
(
2021
).
7.
K.
Budar
and
J.
Falnes
, “
A resonant point absorber of ocean-wave power
,”
Nature
256
,
478
479
(
1975
).
8.
S.
Foteinis
, “
Wave energy converters in low energy seas: Current state and opportunities
,”
Renewable Sustainable Energy Rev.
162
,
112448
(
2022
).
9.
A.
Pecher
, “
Handbook of ocean wave energy
,”
Ocean Engineering and Oceanography
(
Springer
,
2017
), Vol.
7
.
10.
T.
Sarpkaya
,
Wave Forces on Offstructure Structures
, 1st ed. (
Cambridge University Press
,
2010
).
11.
C.
Liang
and
L.
Zuo
, “
On the dynamics and design of a two-body wave energy converter
,”
Renewable Energy
101
,
265
274
(
2017
).
12.
E.
Al Shami
,
X.
Wang
, and
X.
Ji
, “
A study of the effects of increasing the degrees of freedom of a point-absorber wave energy converter on its harvesting performance
,”
Mech. Syst. Signal Process.
133
,
106281
(
2019
).
13.
A.
Babarit
and
A. H.
Clément
, “
Optimal latching control of a wave energy device in regular and irregular waves
,”
Appl. Ocean Res.
28
,
77
91
(
2006
).
14.
A.
Babarit
,
M.
Guglielmi
, and
A. H.
Clément
, “
Declutching control of a wave energy converter
,”
Ocean Eng.
36
,
1015
1024
(
2009
).
15.
M.
Lake
and
A. W.
Troesch
, “
Hydrodynamic coefficient estimation for TLP and spar structures
,”
J. Offshore Mech. Arct. Eng.
122
,
118
124
(
2000
).
16.
R.
Antonutti
,
C.
Peyrard
,
L.
Johanning
,
A.
Incecik
, and
D.
Ingram
, “
An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: Heave plate excursion
,”
Ocean Eng.
91
,
208
217
(
2014
).
17.
L.
Tao
and
D.
Dray
, “
Hydrodynamic performance of solid and porous heave plates
,”
Ocean Eng.
35
,
1006
1014
(
2008
).
18.
J.
Li
,
S.
Liu
,
M.
Zhao
, and
B.
Teng
, “
Experimental investigation of the hydrodynamic characteristics of heave plates using forced oscillation
,”
Ocean Eng.
66
,
82
91
(
2013
).
19.
A.
Brown
,
J.
Thomson
, and
C.
Rusch
, “
Hydrodynamic coefficients of heave plates, with application to wave energy conversion
,”
IEEE J. Oceanic Eng.
43
,
983
996
(
2018
).
20.
S. J.
Beatty
,
M.
Hall
,
B. J.
Buckham
,
P.
Wild
, and
B.
Bocking
, “
Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves
,”
Ocean Eng.
104
,
370
386
(
2015
).
21.
X.
Li
,
C.
Liang
,
C. A.
Chen
,
Q.
Xiong
,
R. G.
Parker
, and
L.
Zuo
, “
Optimum power analysis of a self-reactive wave energy point absorber with mechanically-driven power take-offs
,”
Energy
195
,
116927
(
2020
).
22.
S.
Chen
,
B.
Jiang
,
X.
Li
,
J.
Huang
,
X.
Wu
,
Q.
Xiong
et al, “
Design, dynamic modeling and wave basin verification of a hybrid wave–current energy converter
,”
Appl. Energy
321
,
119320
(
2022
).
23.
L.
Tao
and
S.
Cai
, “
Heave motion suppression of a spar with a heave plate
,”
Ocean Eng.
31
,
669
692
(
2004
).
24.
A.
de Andres
,
R.
Guanche
,
C.
Vidal
, and
I. J.
Losada
, “
Adaptability of a generic wave energy converter to different climate conditions
,”
Renewable Energy
78
,
322
333
(
2015
).
25.
A.
de Andres
,
J.
Maillet
,
J. H.
Todalshaug
,
P.
Möller
,
D.
Bould
, and
H.
Jeffrey
, “
Techno-economic related metrics for a wave energy converters feasibility assessment
,”
Sustainability
8
,
1109
(
2016
).
26.
N. J.
Baker
and
M. A.
Mueller
, “
Direct drive wave energy converters
,”
Rev. Energies Renouvelables
4
,
1
7
(
2001
), p..
27.
P.
Rosa-santos
and
F.
Taveira-pinto
, “
CECO wave energy converter: Experimental proof of concept
,”
J. Renewable Sustainable Energy
7
,
061704
(
2015
).
28.
S.
Chandrasekaran
and
H.
Sinhmar
, “
Power generation using mechanical wave energy converter
,”
Int. J. Ocean Clim. Syst.
3
,
57
70
(
2012
).
29.
H. B.
Karayaka
,
H.
Mahlke
,
D.
Bogucki
,
M.
Mehrubeoglu
,
A.
Texas
, and
M. U.
Christi
, “
A rotational wave energy conversion system development and validation with real ocean wave data
,” in
Proceedings of the IEEE Power and Energy Society General Meeting
(
IEEE
,
2011
), pp.
5
11
.
30.
J.
Sjolte
,
G.
Tjensvoll
, and
M.
Molinas
, “
Power collection from wave energy farms
,”
Appl. Sci.
3
,
420
436
(
2013
).
31.
X.
Li
,
C. A.
Chen
,
Q.
Li
,
L.
Xu
,
C.
Liang
,
K.
Ngo
et al, “
A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification
,”
Appl. Energy
278
,
115459
(
2020
).
32.
C.
Liang
,
J.
Ai
, and
L.
Zuo
, “
Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier
,”
Ocean Eng.
136
,
190
200
(
2017
).
33.
M.
Faizal
,
M. R.
Ahmed
, and
Y. H.
Lee
, “
A design outline for floating point absorber wave energy converters
,”
Adv. Mech. Eng.
6
,
846097
(
2014
).
34.
M.
Eriksson
,
J.
Isberg
, and
M.
Leijon
, “
Hydrodynamic modelling of a direct drive wave energy converter
,”
Int. J. Eng. Sci.
43
,
1377
1387
(
2005
).
35.
J. H.
Vugts
, “
The hydrodynamic coefficients for swaying, heaving and rolling cylinders
,”
Int. Shipbuild. Prog.
15
,
251
275
(
1968
).
36.
J. N.
Newman
,
Marine Hydrodynamics
, 40th anniversary ed. (
The MIT Press
,
London
,
2005
).
37.
K.
Ruehl
,
D.
Ogden
,
Y.-H.
Yu
,
A.
Keester
,
N.
Tom
,
D.
Forbush
,
J.
Leon
,
J.
Grasberger
, and
S.
Husain
,
WEC-Sim, Version v5.0.1
(
2022
).
38.
R.
So
,
S.
Casey
,
S.
Kanner
,
A.
Simmons
, and
T. K. A.
Brekken
, “
PTO-Sim: Development of a power take off modeling tool for ocean wave energy conversion
,” in
Proceedings of the IEEE Power and Energy Society General Meeting
(
IEEE
,
2015
), pp.
1
5
.
39.
K.
Ruehl
,
C.
Michelen
,
S.
Kanner
,
M.
Lawson
, and
Y. H.
Yu
, “
Preliminary verification and validation of WEC-Sim, an open-source wave energy converter design tool
,” in
Proceedings of the ASME 33rd International Conference on Ocean, Offshore and Arctic Engineering
(
ASME
,
San Francisco, CA
,
2014
).
40.
Y.
Yu
,
K.
Hallett
,
L.
Ye
, and
C.
Hotimsky
, “
Design and analysis for a floating oscillating surge wave energy converter
,” in
Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering
, San Francisco, CA, 2014 (ASME, New York, NY,
2014
), pp.
1
10
.
41.
R.
So
,
S.
Member
,
C.
Michelen
,
B.
Bosma
,
P.
Lenee-bluhm
,
T. K. A.
Brekken
et al, “
Statistical analysis of a 1:7 scale field test wave energy converter using WEC-Sim
,”
IEEE Trans. Sustainable Energy
8
,
1118
1126
(
2017
).
42.
G.
Backer
,
Hydrodynamic Design Optimization of Wave Energy Converters Consisting of Heaving Point Absorbers
(
Ghent University
,
Belgium
,
2009
), pp.
1
3
.
43.
J.
Pastor
and
Y.
Liu
, “
Frequency and time domain modeling and power output for a heaving point absorber wave energy converter
,”
Int. J. Energy Environ. Eng.
5
,
101
(
2014
).
44.
V.
Vijayasankar
and
A.
Samad
, “
Analyzing different methods to increase the natural period of a compact wave energy converter
,”
Trends in Manufacturing and Engineering Management
, Lecture Notes in Mechanical Engineering (
Springer Science and Business Media
,
Deutschland GmbH
,
2021
), pp.
991
1001
.
45.
L.
Bonfiglio
, “
Added mass and damping of oscillating bodies: A fully viscous numerical approach
,” in
Recent Advances in Fluid Mechanics, Heat & Mass Transfer and Biology
, Vol.
1
(
WSEAS Press
,
Puerto Morelos, Mexico
,
2011
), pp.
210
215
.
46.
L.
Tao
and
S.
Cai
, “
Heave motion suppression of a spar with a heave plate
,”
Ocean Eng.
31
,
669
692
(
2004
).
47.
L.
Zhu
and
H.
Lim
, “
Hydrodynamic characteristics of a separated heave plate mounted at a vertical circular cylinder
,”
Ocean Eng.
131
,
213
223
(
2017
).
48.
Z.
Zang
,
Q.
Zhang
,
Y.
Qi
, and
X.
Fu
, “
Hydrodynamic responses and efficiency analyses of a heaving-buoy wave energy converter with PTO damping in regular and irregular waves
,”
Renewable Energy
116
,
527
542
(
2018
).
49.
P.
Dafnakis
,
A. P. S.
Bhalla
,
S. A.
Sirigu
,
M.
Bonfanti
,
G.
Bracco
, and
G.
Mattiazzo
, “
Comparison of wave-structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models
,”
Phys. Fluids
32
,
093307
(
2020
).
50.
T.
Bjarte-Larsson
,
M.
Lillbekken per
,
J.
Hals
, and
J.
Falnes
, “
Model experiment on an OWC type wave energy converter with hydraulic power take-off
,” in
Proceedings of the OMAE 21st International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
Oslo, Norway
,
2002
).
51.
A.
Haslum
,
Simplified Methods Applied to Nonlinear Motion of Spar Platforms
(
Norwegian University of Science and Technology
,
2000
).
52.
M.
Durand
,
A.
Babarit
,
B.
Pettinotti
,
O.
Quillard
,
J. L.
Toularastel
, and
A. H.
Clément
, “
Experimental validation of the performances of the SEAREV wave energy converter with real time latching control
,” in
Proceedings of the 7th European Wave and Tidal Energy Conference
(
2007
).
53.
G. S.
Payne
,
Numerical Modelling of a Sloped Wave Energy Device
(
The University of Edinburgh
,
2006
).
You do not currently have access to this content.