A novel reduced-order model (ROM) based on higher order dynamic mode decomposition (HODMD) is proposed for the time series prediction of ship course-keeping motion in waves. The proposed ROM is validated by using the data of course-keeping tests of an ONR tumblehome ship model. First, modes are decomposed from the model test data by standard DMD and HODMD, and the dominant modes are selected according to the energy index. Then, the decomposed dominant modes are used to reconstruct and predict the dynamics of ship motion. The dynamic characteristics in the dynamical systems are revealed according to the energy index, growth rates, and frequencies of the decomposed modes. In addition, the effects of the tunable parameter in HODMD on prediction accuracy and computational times are analyzed by a parametric study. The prediction results by HODMD show better agreement with the model test data than those by standard DMD.

1.
Chen
,
C. Z.
,
Liu
,
S. Y.
,
Zou
,
Z. J.
,
Zou
,
L.
, and
Liu
,
J. Z.
, “
Time series prediction of ship maneuvering motion based on dynamic mode decomposition
,”
Ocean Eng.
286
,
115446
(
2023
).
2.
Cheng
,
C.
,
Ding
,
J.
, and
Zhang
,
Y.
, “
A Koopman operator approach for machinery health monitoring and prediction with noisy and low-dimensional industrial time series
,”
Neurocomputing
406
,
204
214
(
2020
).
3.
D'Agostino
,
D.
,
Serani
,
A.
,
Stern
,
F.
, and
Diez
,
M.
, “
Time-series forecasting for ships maneuvering in waves via recurrent-type neural networks
,”
J. Ocean Eng. Mar. Energy.
8
,
479
487
(
2022
).
4.
Demo
,
N.
,
Ortali
,
G.
,
Gustin
,
G.
,
Rozza
,
G.
, and
Lavini
,
G.
, “
An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques
,”
Boll. Unione Mat. Ital.
14
,
211
230
(
2021
).
5.
Diez
,
M.
,
Serani
,
A.
,
Campana
,
E. F.
, and
Stern
,
F.
, “
Time-series forecasting of ships maneuvering in waves via dynamic mode decomposition
,”
J. Ocean Eng. Mar. Energy
8
,
471
478
(
2022
).
6.
Groun
,
N.
,
Villalba-Orero
,
M.
,
Lara-Pezzi
,
E.
,
Valero
,
E.
,
Garicano-Mena
,
J.
, and
Le Clainche
,
S.
, “
Higher order dynamic mode decomposition: From fluid dynamics to heart disease analysis
,”
Comput. Biol. Med.
144
,
105384
(
2022
).
7.
Guo
,
X. X.
,
Zhang
,
X. T.
,
Tian
,
X. L.
,
Li
,
X.
, and
Lu
,
W. Y.
, “
Predicting heave and surge motions of a semi-submersible with neural networks
,”
Appl. Ocean Res.
112
,
102708
(
2021
).
8.
Gutierrez-Castillo
,
P.
,
Garrido-Martin
,
M.
,
Bölle
,
T.
,
García-Ortiz
,
J. H.
,
Aguilar-Cabello
,
J.
, and
del Pino
,
C.
, “
Higher order dynamic mode decomposition of an experimental trailing vortex
,”
Phys. Fluids
34
,
107116
(
2022
).
9.
Jones
,
C. N. S.
and
Utyuzhnikov
,
S. V.
, “
Application of higher order dynamic mode decomposition to modal analysis and prediction of power systems with renewable sources of energy
,”
Int. J. Electr. Power Energy Syst.
138
,
107925
(
2022
).
10.
Kou
,
J. Q.
,
Le Clainche
,
S.
, and
Zhang
,
W. W.
, “
A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition with a mode selection criterion
,”
Phys. Fluids
30
(
1
),
016103
(
2018
).
11.
Kou
,
J. Q.
, and
Zhang
,
W. W.
, “
An improved criterion to select dominant modes from dynamic mode decomposition
,”
Eur. J. Mech. B/Fluids
62
,
109
129
(
2017
).
12.
Kou
,
J. Q.
, and
Zhang
,
W. W.
, “
Data-driven modeling for unsteady aerodynamics and aeroelasticity
,”
Prog. Aerosp. Sci.
125
,
100725
(
2021
).
13.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
SIAM
,
2016
).
14.
Le Clainche
,
S.
and
Ferrer
,
E.
, “
A reduced order model to predict transient flows around straight bladed vertical axis wind turbines
,”
Energies
11
(
3
),
566
(
2018
).
15.
Le Clainche
,
S.
,
Han
,
Z. H.
, and
Ferrer
,
E.
, “
An alternative method to study cross-flow instabilities based on high order dynamic mode decomposition
,”
Phys. Fluids
31
,
094101
(
2019
).
16.
Le Clainche
,
S.
and
Vega
,
J. M.
, “
Higher order dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
16
(
2
),
882
925
(
2017
).
17.
Li
,
C. Y.
,
Chen
,
Z. S.
,
Tse
,
T. K. T.
,
Weerasuriya
,
A. U.
,
Zhang
,
X. L.
,
Fu
,
Y. F.
, and
Lin
,
X. S.
, “
A parametric and feasibility study for data sampling of the dynamic mode decomposition: Range, resolution, and universal convergence states
,”
Nonlinear Dyn.
107
,
3683
3707
(
2022a
).
18.
Li
,
M. W.
,
Xu
,
D. Y.
,
Geng
,
J.
, and
Hong
,
W. C.
, “
A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm
,”
Nonlinear Dyn.
107
,
2447
2467
(
2022b
).
19.
Li
,
S. J.
,
Xu
,
Z. Q.
,
Liu
,
J. L.
, and
Xu
,
C. Q.
, “
Learning-based extended dynamic mode decomposition for addressing path-following problem of underactuated ships with unknown dynamics
,”
Int. J. Control, Autom., Syst.
20
(
12
),
4076
4089
(
2022c
).
20.
Liu
,
T. T.
,
Zhou
,
L.
,
Tang
,
H.
, and
Zhang
,
H. F.
, “
Mode interpretation and force prediction surrogate model of flow past twin cylinders via machine learning integrated with high-order dynamic mode decomposition
,”
Phys. Fluids
35
,
023611
(
2023
).
21.
Liu
,
Y. Q.
,
Long
,
J. C.
,
Wu
,
Q.
,
Huang
,
B.
, and
Wang
,
G. Y.
, “
Data-driven modal decomposition of transient cavitating flow
,”
Phys. Fluids
33
(
11
),
113316
(
2021
).
22.
Lu
,
Z. W.
,
Li
,
F.
,
Cao
,
S. C.
,
Yuan
,
R.
, and
Lv
,
Y.
, “
Crack localization in operating rotors based on multivariate higher order dynamic mode decomposition
,”
Sensors
22
,
6131
(
2022
).
23.
Rowley
,
C. W.
,
Mezic
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
24.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
25.
Schmid
,
P. J.
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
26.
Serani
,
A.
,
Dragone
,
P.
,
Stern
,
F.
, and
Diez
,
M.
, “
On the use of dynamic mode decomposition for time-series forecasting of ships operating in waves
,”
Ocean Eng.
267
,
113235
(
2023
).
27.
Tokyo
, see http://www.t2015.nmri.go.jp/
Tokyo 2015 Workshop on CFD in Ship Hydrodynamics
(
2015
).”
28.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
(
2
),
391
421
(
2014
).
29.
Vega
,
J. M.
and
Le Clainche
,
S.
,
Higher Order Dynamic Mode Decomposition and Its Applications
(
Academic Press
,
2020
).
30.
Wang
,
Y. C.
,
Wang
,
H.
,
Zhou
,
B.
, and
Fu
,
H. X.
, “
Multi-dimensional prediction method based on Bi-LSTMC for ship roll
,”
Ocean Eng.
242
,
110106
(
2021
).
31.
Zhang
,
Y. M.
and
Jiang
,
L. J.
, “
A novel data-driven scheme for the ship wake identification on the 2D dynamic sea surface
,”
IEEE Access
8
,
69593
69600
(
2020
).
You do not currently have access to this content.