Savonius hydrokinetic turbines (SHTs), categorized as emerging cyclic-type wave energy converters (WECs), have demonstrated notable potential in achieving elevated energy conversion efficiency and consistent power output. This performance is particularly observed when operating under the initial phase-locked strategy (IPLS), marking a significant advancement in the realm of wave energy harvesting. However, a thorough exploration of the influences stemming from wave conditions and turbine design remains an area that warrants further investigation for advancing the performance of SHT-WECs under the proper operational strategy. This study undertakes an exhaustive analysis of geometric parameters, encompassing turbine diameter, blade number, and thickness. An experiment-validated numerical model based on the unsteady two-phase Reynolds-averaged Navier–Stokes equations is adopted in the research. Comprehensive investigations include analyses of flow fields around the turbine, pressure distributions on blade surfaces, and dynamic torque variations. These analyses serve to elucidate the variation rules of hydrodynamic characteristics and their influential mechanisms. The results highlight the notable impact of the proposed “relative-short wavelength impact” on the performance of SHT-WECs operating under IPLS conditions. Notably, no significant impact is observed when the relative wavelength exceeds 17. Optimal performance is achieved with the thinnest and two-bladed turbine configuration. Moreover, optimizing the turbine diameter significantly enhances SHT-WEC conversion efficiency, with the attained maximum value reaching approximately 18.6%. This study offers a concise guideline for designing turbine diameters in alignment with specific wave conditions.

1.
IEA
, “
World energy outlook 2022
.” International Energy Agency: Paris, France (
2022
):
233
255
, https://www.iea.org/reports/world-energy-outlook-2022.
2.
IRENA
, Renewable Energy Statistics. “
International renewable energy agency
.” Abu Dhabi 2020 (
2020
).
3.
C.
Zheng
et al, “
An assessment of global ocean wave energy resources over the last 45 a
,”
Acta Oceanol. Sin.
33
(
1
),
92
101
(
2014
).
4.
D.
Zhang
,
W.
Li
, and
Y.
Lin
, “
Wave energy in China: Current status and perspectives
,”
Renewable Energy
34
(
10
),
2089
2092
(
2009
).
5.
A.
Clement
et al, “
Wave energy in Europe: Current status and perspectives
,”
Renewable Sustainable Energy Rev.
6
(
5
),
405
431
(
2002
) (in English).
6.
A. F. d. O.
Falcão
, “
Wave energy utilization: A review of the technologies
,”
Renewable Sustainable Energy Rev.
14
(
3
),
899
918
(
2010
).
7.
T.
Heath
,
T. J. T.
Whittaker
, and
C. B.
Boake
, “
The design, construction and operation of the LIMPET wave energy converter (Islay, Scotland) [land installed marine powered energy transformer]
,” paper presented at
European Wave Energy Conference
,
Aalborg, Denmark
(
2001
).
8.
Y.
Torre-Enciso
,
I.
Ortubia
,
L. I.
Ló pez de Aguileta
, and
J.
Marqués
, “
Mutriku wave power plant: From the thinking out to the reality
,” paper presented at
Proceedings 8th European Wave Tidal Energy Conference
(
2009
).
9.
J.
Weber
,
F.
Mouwen
,
A.
Parrish
, and
D.
Robertson
, “
Wavebob—Research and development network and tools in the context of systems engineering
,” paper presented at
Proceedings of the 8th European Wave Tidal Energy Conference
(
2009
).
10.
M.
Kramer
,
L.
Marquis
, and
P.
Frigaard
, “
Performance evaluation of the wavestar prototype
,” paper presented at
Proceedings of the 9th European Wave and Tidal Conference (EWTEC)
,
Southampton, UK
(
2011
).
11.
K.
Budal
and
J.
Falnes
, “
Wave power conversion by point absorbers: A Norwegian project
,”
Int. J. Ambient Energy
3
(
2
),
59
67
(
1982
).
12.
J. P.
Kofoed
,
P.
Frigaard
,
E.
Friis-Madsen
, and
H. C.
Sørensen
, “
Prototype testing of the wave energy converter wave dragon
,”
Renewable Energy
31
(
2
),
181
189
(
2006
) (in English).
13.
S. J.
Savonius
, “
The S-rotor and its applications
,”
Mech. Eng.
53
,
333
338
(
1931
).
14.
P. K.
Talukdar
,
A.
Sardar
,
V.
Kulkarni
, and
U. K.
Saha
, “
Parametric analysis of model Savonius hydrokinetic turbines through experimental and computational investigations
,”
Energy Convers. Manage.
158
,
36
49
(
2018
).
15.
R.
Ji
,
K.
Sun
,
J.
Zhang
,
R.
Zhu
, and
S.
Wang
, “
A novel actuator line-immersed boundary (AL-IB) hybrid approach for wake characteristics prediction of a horizontal-axis wind turbine
,”
Energy Convers. Manage.
253
,
115193
(
2022
).
16.
S. A.
Payambarpour
,
A. F.
Najafi
, and
F.
Magagnato
, “
Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro Savonius turbine: Parametric study
,”
Renewable Energy
148
,
44
59
(
2020
).
17.
K.
Golecha
,
T. I.
Eldho
, and
S. V.
Prabhu
, “
Influence of the deflector plate on the performance of modified Savonius water turbine
,”
Appl. Energy
88
(
9
),
3207
3217
(
2011
).
18.
E.
Fatahian
,
F.
Ismail
,
M. H. H.
Ishak
, and
W. S.
Chang
, “
The role of wake splitter deflector on performance enhancement of Savonius wind turbine
,”
Phys. Fluids
34
(
9
),
095111
(
2022
).
19.
R. V.
Bethi
,
S.
Mitra
, and
P.
Kumar
, “
An OpenFOAM based study of Savonius turbine arrays in tunnels for power maximisation
,”
Renewable Energy
179
,
1345
1359
(
2021
).
20.
K.
Sun
,
R.
Ji
,
J.
Zhang
,
Y.
Li
, and
B.
Wang
, “
Investigations on the hydrodynamic interference of the multi-rotor vertical axis tidal current turbine
,”
Renewable Energy
169
,
752
764
(
2021
).
21.
S. N.
Bora
,
S.
Das
,
M. H.
Meylan
,
S.
Saha
, and
S.
Zheng
, “
Time-dependent water wave scattering by a marine structure consisting of an array of compound porous cylinders
,”
Phys. Fluids
35
(
7
),
077103
(
2023
).
22.
M. M.
Kamal
and
R. P.
Saini
, “
A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine
,”
Renewable Energy
190
,
788
804
(
2022
).
23.
A.
Kumar
and
R. P.
Saini
, “
Performance parameters of Savonius type hydrokinetic turbine—A review
,”
Renewable Sustainable Energy Rev.
64
,
289
310
(
2016
).
24.
C. M.
Chan
,
H. L.
Bai
, and
D. Q.
He
, “
Blade shape optimization of the Savonius wind turbine using a genetic algorithm
,”
Appl. Energy
213
,
148
157
(
2018
).
25.
H.
Fatahian
,
Z.
Mohamed-Kassim
, and
W. S.
Chang
, “
Insights into the flow dynamics and rotor performance of a Savonius turbine with dynamic venting using controllable flaps
,”
Phys. Fluids
34
(
12
),
127109
(
2022
).
26.
J.
Yao
,
F.
Li
,
J.
Chen
,
Z.
Yuan
, and
W.
Mai
, “
Parameter analysis of Savonius hydraulic turbine considering the effect of reducing flow velocity
,”
Energies
13
(
1
),
24
(
2019
).
27.
S.
Roy
,
R.
Das
, and
U. K.
Saha
, “
An inverse method for optimization of geometric parameters of a Savonius-style wind turbine
,”
Energy Convers. Manage.
155
,
116
127
(
2018
).
28.
F.
Li
,
J.
Yao
,
J.
Chen
,
H.
Jin
, and
Z.
Yuan
, “
Performance analysis of Savonius hydrokinetic turbine capturing wave energy under different operating strategies
,”
Energy Convers. Manage.
251
,
115006
(
2022
).
29.
D. D.
Prasad
,
M. R.
Ahmed
, and
Y.-H.
Lee
, “
Studies on the performance of Savonius rotors in a numerical wave tank
,”
Ocean Eng.
158
,
29
37
(
2018
).
30.
M. R.
Ahmed
,
M.
Faizal
, and
Y.-H.
Lee
, “
Optimization of blade curvature and inter-rotor spacing of Savonius rotors for maximum wave energy extraction
,”
Ocean Eng.
65
,
32
38
(
2013
).
31.
M.
Tutar
and
I.
Veci
, “
Experimental study on performance assessment of Savonius rotor type wave energy converter in an experimental wave flume
,”
IET Renewable Power Gener.
10
(
4
),
541
550
(
2016
).
32.
M. A.
Zullah
and
Y.-H.
Lee
, “
Performance evaluation of a direct drive wave energy converter using CFD
,”
Renewable Energy
49
,
237
241
(
2013
).
33.
M.
Mosbahi
,
A.
Ayadi
,
Y.
Chouaibi
,
Z.
Driss
, and
T.
Tucciarelli
, “
Performance study of a Helical Savonius hydrokinetic turbine with a new deflector system design
,”
Energy Convers. Manage.
194
,
55
74
(
2019
).
34.
V.
Patel
,
G.
Bhat
,
T. I.
Eldho
, and
S. V.
Prabhu
, “
Influence of overlap ratio and aspect ratio on the performance of Savonius hydrokinetic turbine
,”
Int. J. Energy Res.
41
(
6
),
829
844
(
2017
).
35.
Y.
Liu
and
Q.
Xiao
, “
Development of a fully coupled aero-hydro-mooring-elastic tool for floating offshore wind turbines
,”
J. Hydrodyn.
31
(
1
),
21
33
(
2019
).
36.
W. P.
Jones
and
B. E.
Launder
, “
The prediction of laminarization with a two-equation model of turbulence
,”
Int. J. Heat Mass Transfer
15
(
2
),
301
314
(
1972
).
37.
D. D.
Prasad
,
M. R.
Ahmed
,
Y.-H.
Lee
, and
R. N.
Sharma
, “
Validation of a piston type wave-maker using numerical wave tank
,”
Ocean Eng.
131
,
57
67
(
2017
).
38.
J. D.
Fenton
, “
A fifth-order stokes theory for steady waves
,”
J. Waterw. Port Coastal Ocean Eng.
111
(
2
),
216
234
(
1985
).
39.
J.
Choi
and
S. B.
Yoon
, “
Numerical simulations using momentum source wave-maker applied to RANS equation model
,”
Coastal Eng.
56
(
10
),
1043
1060
(
2009
).
40.
M.
Tutar
and
I.
Veci
, “
Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF)
,”
Renewable Energy
86
,
8
25
(
2016
).
You do not currently have access to this content.