The COVID-19 pandemic has spotlit the scientific field of fluid dynamics governing airborne transmission through virus-laden mucosal-salivary droplets. In this work, a mathematical model for airborne droplet dispersion and viral transmission centered on evaporating droplets containing solid residue was proposed. Droplet dynamics are influenced by factors such as initial velocity, relative humidity (RH), and solid residue, in agreement with analytical and experimental results. Interestingly, the maximum droplet dispersion distance depends strongly on initial droplet size and RH, such as 0.8-mm-diameter droplet at 0.3 RH, 1.0 mm at 0.6 RH, and 1.75 mm at 0.9 RH, but only weakly on initial projected velocity. Under realistic conditions, an evaporating sputum droplet can cover a dispersion distance at least three times than that of a pure water droplet. Based on Wells falling curves, the critical droplet size, the largest droplet that can remain suspended in air without settling due to gravity, ranges from 120 μm at 0.3 RH to 75 μm at 0.9 RH. Together, our results highlight the role of evaporation on droplet lifetime, dispersion distance, and transmission risks.

1.
See https://covid19.who.int/ for WHO website; retrieved 6 August
2023
.
2.
R.
Mittal
,
R.
Ni
, and
J. H.
Seo
, “
The flow physics of COVID-19
,”
J. Fluid Mech.
894
,
F2-1
F2-14
(
2020
).
3.
S.
Asadi
,
N.
Bouvier
,
A. S.
Wexler
, and
W. D.
Ristenpart
, “
The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?
,”
Aerosol Sci. Technol.
54
,
635
638
(
2020
).
4.
M.
Trancossia
,
C.
Carli
,
G.
Cannistraro
,
J.
Pascoa
, and
S.
Sharma
, “
Could thermodynamics and heat and mass transfer research produce a fundamental step advance toward and significant reduction of SARS-COV-2 spread?
,”
Int. J. Heat Mass Transfer
170
,
120983
(
2021
).
5.
H. P.
Wang
,
Z. B.
Li
,
X. L.
Zhang
,
L. X.
Zhu
,
Y.
Liu
, and
S. Z.
Wang
, “
The motion of respiratory droplets produced by coughing
,”
Phys. Fluids
32
,
125102
(
2020
).
6.
L.
Bourouiba
, “
Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID
,”
JAMA
323
,
1837
1838
(
2020
).
7.
J. K.
Gupta
,
C. H.
Lin
, and
Q.
Chen
, “
Flow dynamics and characterization of a cough
,”
Indoor Air
19
,
517
525
(
2009
).
8.
P.
Bahl
,
C.
de Silva
,
C. R.
Maclntyre
,
S.
Bhattacharjee
,
A. A.
Chughtai
, and
C.
Doolan
, “
Flow dynamics of droplets expelled during sneezing
,”
Phys. Fluids
33
,
111901
(
2021
).
9.
See https://www.moh.gov.sg/news-highlights/details/links-established-between-church-clusters-and-wuhan-travellers for the linkage among the infected cases; retrieved 14 December
2022
.
10.
Y.
Shen
,
C. W.
Li
,
H. J.
Dong
,
Z.
Wang
,
L.
Martinez
,
Z.
Sun
,
A.
Handel
,
Z. P.
Chen
,
E.
Chen
,
M. H.
Ebell
,
F.
Wang
,
B.
Yi
,
H. B.
Wang
,
X. X.
Wang
,
A. H.
Wang
,
B. B.
Chen
,
Y. L.
Qi
,
L. R.
Liang
,
Y.
Li
,
F.
Ling
,
J. F.
Chen
, and
G. Z.
Xu
, “
Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China
,”
JAMA Intern. Med.
180
,
1665
1671
(
2020
).
11.
J.
Lu
,
J. N.
Gu
,
K. B.
Li
,
C. H.
Xu
,
W. Z.
Su
,
Z. S.
Lai
,
D. Q.
Zhou
,
C.
Yu
,
B.
Xu
, and
Z. C.
Yang
, “
COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020
,”
Emerging Infect. Dis.
26
,
1628
1631
(
2020
).
12.
L.
Hamner
,
P.
Dubbel
,
I.
Capron
,
A.
Ross
,
A.
Jordan
,
J.
Lee
,
J.
Lynn
,
A.
Ball
,
S.
Narwal
,
S.
Russell
,
D.
Patrick
, and
H.
Leibrand
, “
High SARS-CoV-2 attack rate following exposure at a choir practice—Skagit County, Washington, March 2020
,”
Morb. Mortal. Wkly. Rep.
69
,
606
610
(
2020
).
13.
S. Y.
Park
,
Y.
Kim
,
S.
Yi
,
S.
Lee
,
B.
Na
,
C. B.
Kim
,
J.
Kim
,
H. S.
Kim
,
Y. B.
Kim
,
Y.
Park
,
I. S.
Huh
,
H. K.
Kim
,
H. J.
Yoon
,
H.
Jang
,
K.
Kim
,
Y.
Chang
,
I.
Kim
,
H.
Lee
,
J.
Gwack
,
S. S.
Kim
,
M.
Kim
,
S.
Kweon
,
Y. J.
Choe
,
O.
Park
,
Y. J.
Park
, and
E. K.
Jeong
, “
Coronavirus disease outbreak in call center South Korea
,”
Emerging Infect. Dis.
26
,
1666
1670
(
2020
).
14.
G.
Bagheri
,
O.
Schlenczek
,
L.
Turco
,
B.
Thiede
,
K.
Stieger
,
J. M.
Kosub
,
S.
Clauberg
,
M. L.
Pöhlker
,
C.
Pöhlker
,
J.
Moláček
,
S.
Scheithauer
, and
E.
Bodenschatz
, “
Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission
,”
J. Aerosol Sci.
168
,
106102
(
2023
).
15.
H.
Wang
,
Z.
Li
,
Y.
Liu
,
L.
Zhu
, and
Z.
Zhou
, “
Experimental study of the dispersion of cough-generated droplets from a person going up- or downstairs
,”
AIP Adv.
12
,
015002
(
2022
).
16.
L.
Morawska
,
G. R.
Johnson
,
Z. D.
Ristovski
,
M.
Hargreaves
,
K.
Mengersen
,
S.
Corbett
,
C. Y. H.
Chao
,
Y.
Li
, and
D.
Katoshevski
, “
Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities
,”
J. Aerosol Sci.
40
,
256
269
(
2009
).
17.
L.
Morawska
and
G.
Buonanno
, “
The physics of particle formation and deposition during breathing
,”
Nat. Rev. Phys.
3
,
300
301
(
2021
).
18.
A. C.
Almstrand
,
B.
Bake
,
E.
Ljungström
,
P.
Larsson
,
A.
Bredberg
,
E.
Mirgorodskaya
, and
A. C.
Olin
, “
Effect of airway opening on production of exhaled particles
,”
J. Appl. Physiol.
108
,
584
588
(
2010
).
19.
J.
Redrow
,
S. L.
Mao
,
I.
Celik
,
J. A.
Posada
, and
Z. G.
Feng
, “
Modeling the evaporation and dispersion of airborne sputum droplets expelled from a human cough
,”
Build. Environ.
46
,
2042
2051
(
2011
).
20.
W. F.
Wells
, “
On air-borne infections: Study II
.
Droplets and droplet nuclei,” Am. J. Epidemiol.
20
,
611
618
(
1934
).
21.
T.
Dbouka
and
D.
Drikakis
, “
On coughing and airborne droplet transmission to humans
,”
Phys. Fluids
32
,
053310
(
2020
).
22.
Y.
Feng
,
T.
Marchal
,
T.
Sperry
, and
H.
Yi
, “
Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study
,”
J. Aerosol Sci.
147
,
105585
(
2020
).
23.
M. R.
Pendar
and
J. C.
Páscoa
, “
Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough
,”
Phys. Fluids
32
,
083305
(
2020
).
24.
Y. H.
Yan
,
X. R.
Li
,
X.
Fang
,
Y.
Tao
, and
J. Y.
Tu
, “
A spatiotemporal assessment of occupants' infection risks in a multi-occupants space using modified Wells–Riley model
,”
Build. Environ.
230
,
110007
(
2023
).
25.
S.
Chaudhuri
,
S.
Basu
,
P.
Kabi
,
V. R.
Unni
, and
A.
Saha
, “
Modeling the role of respiratory droplets in Covid-19 type pandemics
,”
Phys. Fluids
32
,
063309
(
2020
).
26.
H. Y.
Li
,
F. Y.
Leong
,
G.
Xu
,
Z. W.
Ge
,
C. W.
Kang
, and
K. H.
Lim
, “
Dispersion of evaporating cough droplets in tropical outdoor environment
,”
Phys. Fluids
32
,
113301
(
2020
).
27.
H. Y.
Li
,
F. Y.
Leong
,
G.
Xu
,
C. W.
Kang
,
K. H.
Lim
,
B. H.
Tan
, and
C. M.
Loo
, “
Airborne dispersion of droplets during coughing: A physical model of viral transmission
,”
Sci. Rep.
11
,
4617
(
2021
).
28.
X.
Yang
,
H. Y.
Yang
,
C. Y.
Ou
,
Z. W.
Luo
, and
J.
Hang
, “
Airborne transmission of pathogen-laden expiratory droplets in open outdoor space
,”
Sci. Total Environ.
773
,
145537
(
2021
).
29.
Y. H.
Yan
,
X.
Fang
,
X. R.
Li
,
Y.
Tao
,
P.
Yan
, and
J. Y.
Tu
, “
Evaporation flow characteristics of respiratory droplets: Dynamic property under multifarious ambient conditions
,”
Build. Environ.
221
,
109272
(
2022
).
30.
Y. G.
Li
,
P.
Cheng
, and
W.
Jia
, “
Poor ventilation worsens short-range airborne transmission of respiratory infection
,”
Indoor Air
32
,
e12946
(
2022
).
31.
W.
Jia
,
J. J.
Wei
,
P.
Cheng
,
Q.
Wang
, and
Y. G.
Li
, “
Exposure and respiratory infection risk via the short-range airborne route
,”
Build. Environ.
219
,
109166
(
2022
).
32.
B.
Wang
,
A.
Zhang
,
J. L.
Sun
,
H.
Liu
,
J.
Hu
, and
L. X.
Xu
, “
Study of SARS transmission via liquid droplets in air
,”
J. Biomech. Eng.
127
,
32
38
(
2005
).
33.
M.
Abdelouahaba
and
R.
Gatignol
, “
Study of falling water drop in stagnant air
,”
Eur. J. Mech. B/Fluids
60
,
82
89
(
2016
).
34.
L.
Liu
,
J.
Wei
,
Y.
Li
, and
A.
Ooi
, “
Evaporation and dispersion of respiratory droplets from coughing
,”
Indoor Air
27
,
179
190
(
2017
).
35.
X.
Xie
,
Y.
Li
,
A. T. Y.
Chwang
,
P. L.
Ho
, and
W. H.
Seto
, “
How far droplets can move in indoor environments–revisiting the Wells evaporation–falling curve
,”
Indoor Air
17
,
211
225
(
2007
).
36.
B. B.
Wang
,
H. J.
Wu
, and
X. F.
Wan
, “
Transport and fate of human expiratory droplets—A modeling approach
,”
Phys. Fluids
32
,
083307
(
2020
).
37.
H. J.
Holterman
,
Kinetics and Evaporation of Water Drops in Air
(
IMAG
,
2003
).
38.
J. I.
Partanen
, “
Re-evaluation of the mean activity coefficients of strontium chloride in dilute aqueous solutions from (10 to 60) °C and at 25 °C up to the saturated solution where the molality is 3.520 mol·kg−1
,”
J. Chem. Eng. Data
58
,
2738
2747
(
2013
).
39.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems
,
2nd ed.
(
Cambridge University Press
,
New York
,
1997
).
40.
O. A.
Alduchov
and
R. E.
Eskridge
, “
Improved Magnus form approximation of saturation vapor pressure
,”
J. Appl. Meteorol.
35
(
1996
),
601
609
(
1996
).
41.
W. E.
Ranz
and
W. R.
Marshall
,
Jr., “Evaporation from drops: Part II
,”
Chem. Eng. Prog.
48
(
4
),
173
180
(
1952
).
42.
F. M.
Raoult
, “
Loi générale des tensions de vapeur des dissolvants (General law of vapor pressures of solvents
,”
C.R.
104
,
1430
1433
(
1886
).
43.
H.
Rumpf
,
Particle Technology
(
Springer, The Netherlands
,
1975
).
44.
R. G.
Loudon
and
R. M.
Roberts
, “
Singing and the dissemination of tuberculosis
,”
Am. Rev. Respir. Dis.
98
,
297
300
(
1968
).
45.
S. S.
Spicer
and
J. R.
Martinez
, “
Mucin biosynthesis and secretion in the respiratory tract
,”
Environ. Health Perspect.
55
,
193
204
(
1984
).
46.
J.
Frenkiel
, “
Evaporation reduction: Physical and chemical principles and review of experiments
,”
Arid Zone Res.
27
,
1
(
1965
); available at http://unesdoc.unesco.org/images/0007/000700/070035eo.pdf
47.
R.
Choudhury
,
U. J.
Das
,
A.
Ceruti
,
L.
Piancastelli
,
L.
Frizziero
,
G.
Zanuccoli
,
N. E.
Daidzic
,
I.
Rocchi
,
G.
Casano
, and
S.
Piva
, “
Visco-elastic effects on the three dimensional hydrodynamic flow past a vertical porous plate
,”
Int. Inf. Eng. Technol. Assoc.
31
,
1
8
(
2013
).
You do not currently have access to this content.