This paper studies the modulation effect of linear shear flow (LSF), comprising a uniform flow and a shear flow with constant vorticity, combined with wind and dissipation on freak wave generation in water of finite depth. A nonlinear Schrödinger equation (NLSE) modified by LSF, strong wind, and dissipation is derived. This can be reduced to consider the effects of LSF, light wind, and dissipation, and further reduced to include only LSF. The relation between modulational instability (MI) of the NLSE and freak waves represented as a modified Peregrine Breather solution is analyzed. When considering only LSF, the convergence (divergence) effect of uniform up-flow (down-flow) and positive (negative) vorticity increases (decreases) the MI growth rate and promotes (inhibits) freak wave generation. The combined effect of LSF and light wind shows that a light adverse (tail) wind can restrain (amplify) MI and bury (trigger) freak waves. Under the effect of a light tailwind, LSF has the same effect on the MI growth rate and freak wave generation as the case without any wind. The combination of LSF and strong wind enables both adverse and tail winds to amplify MI and trigger freak waves. In the presence of strong wind, LSF has the opposite effect to the case of a light tailwind.

1.
E.
Didenkulova
,
I.
Didenkulova
, and
I.
Medvedev
, “
Freak wave events in 2005–2021: Statistics and analysis of favourable wave and wind conditions
,”
Nat. Hazards Earth Syst. Sci.
23
,
1653
1663
(
2023
).
2.
C.
Kharif
and
E.
Pelinovsky
, “
Physical mechanisms of the rogue wave phenomenon
,”
Eur. J. Mech. B. Fluids
22
,
603
634
(
2003
).
3.
K. B.
Dysthe
,
H. E.
Krogstad
, and
P.
Müller
, “
Oceanic rogue waves
,”
Annu. Rev. Fluid Mech.
40
,
287
310
(
2008
).
4.
T. A.
Adcock
and
P. H.
Taylor
, “
The physics of anomalous (‘rogue’) ocean waves
,”
Rep. Prog. Phys.
77
,
105901
(
2014
).
5.
J. M.
Dudley
,
G.
Genty
,
A.
Mussot
,
A.
Chabchoub
, and
F.
Dias
, “
Rogue waves and analogies in optics and oceanography
,”
Nat. Rev. Phys.
1
,
675
689
(
2019
).
6.
S.
Liu
,
X. S.
Zhang
,
J. C.
Yang
, and
J. Y.
Yao
, “
Modulational instability and statistical properties of irregular waves in finite water depth
,”
Appl. Ocean Res.
120
,
103031
(
2022
).
7.
L.
Draper
, “
‘Freak’ ocean waves
,”
Weather
21
,
2
4
(
1966
).
8.
M. J.
Lighthill
, “
Contributions to the theory of waves in non-linear dispersive systems
,”
J. Inst. Maths Applics
1
,
269
306
(
1965
).
9.
T. B.
Benjamin
and
J. E.
Feir
, “
The disintegration of wave trains on deep water. I. Theory
,”
J. Fluid Mech.
27
,
417
430
(
1967
).
10.
T. B.
Benjamin
, “
Instability of periodic wave trains in nonlinear dispersive systems
,”
Proc. R. Soc. London, Ser. A
299
,
59
75
(
1967
).
11.
H.
Hasimoto
and
H.
Ono
, “
Nonlinear modulation of gravity waves
,”
J. Phys. Soc. Jpn.
33
,
805
811
(
1972
).
12.
E. V.
Groesen
, “
Wave groups in uni-directional surface-wave models
,”
J. Eng. Math.
34
,
215
226
(
1998
).
13.
E. V.
Groesen
and
J. H.
Westhuis
, “
Modelling and simulation of surface water waves
,”
Math. Comput. Simul.
59
,
341
360
(
2002
).
14.
E.
van Groesen
and
A.
Andonowati
, “
Finite energy wave signals of extremal amplitude in the spatial NLS-dynamics
,”
Phys. Lett. A
357
,
86
91
(
2006
).
15.
A.
Andonowati
,
W. M.
Kusumawinahyu
, and
E. V.
Groesen
, “
A numerical study of the breaking of modulated waves generated at a wave maker
,”
Appl. Ocean Res.
28
,
9
17
(
2006
).
16.
Andonowati
,
N.
Karjanto
, and
E. V.
Groesen
, “
Extreme wave phenomena in down-stream running modulated waves
,”
Appl. Math. Modell.
31
,
1425
1443
(
2007
).
17.
N.
Karjanto
and
E. V.
Groesen
, “
Note on wavefront dislocation in surface water waves
,”
Phys. Lett. A
371
,
173
179
(
2007
).
18.
N.
Karjanto
and
E. V.
Groesen
, “
Qualitative comparisons of experimental results on deterministic freak wave generation based on modulational instability
,”
J. Hydro-environ. Res.
3
,
186
192
(
2010
).
19.
J. C.
Li
,
W. H.
Hui
, and
M. A.
Donelan
, “
Effect of velocity shear on the stability of surface deep water wave trains
,”
Nonlinear Water Waves
(
Springer-Verlag
,
1988
).
20.
R.
Thomas
,
C.
Kharif
, and
M.
Manna
, “
A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity
,”
Phys. Fluids
24
,
127102
(
2012
).
21.
B.
Liao
,
G.
Dong
,
Y.
Ma
, and
J. L.
Gao
, “
Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth
,”
Phys. Rev. E
96
,
043111
(
2017
).
22.
S. F.
Li
,
J.
Chen
,
A. Z.
Cao
, and
J. B.
Song
, “
A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
,”
Chin. Phys. B
28
,
124701
(
2019
).
23.
R. D.
Maciver
,
R. R.
Simons
, and
G. P.
Thomas
, “
Gravity waves interacting with a narrow jet-like current
,”
J. Geophys. Res.
111
,
C03009
, https://doi.org/10.1029/2005JC003030 (
2006
).
24.
W.
Choi
, “
Nonlinear surface waves interacting with a linear shear current
,”
Math. Comput. Simul.
80
,
29
36
(
2009
).
25.
Y. X.
Ma
,
G. H.
Dong
,
M.
Perlin
,
X. Z.
Ma
,
G.
Wang
, and
J.
Xu
, “
Laboratory observations of wave evolution, modulation and blocking due to spatially varying opposing currents
,”
J. Fluid Mech.
661
,
108
129
(
2010
).
26.
M.
Onorato
,
D.
Proment
, and
A.
Toffoli
, “
Triggering rogue waves in opposing currents
,”
Phys. Rev. Lett.
107
,
184502
(
2011
).
27.
Y. X.
Ma
,
X. Z.
Ma
,
M.
Perlin
, and
G. H.
Dong
, “
Extreme waves generated by modulational instability on adverse currents
,”
Phys. Fluids
25
,
114109
(
2013
).
28.
A.
Toffoli
,
T.
Waseda
,
H.
Houtani
,
T.
Kinoshita
,
K.
Collins
,
D.
Proment
, and
M.
Onorato
, “
Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents
,”
Phys. Rev. E
87
,
051201(R)
(
2013
).
29.
A.
Toffoli
,
T.
Waseda
,
H.
Houtani
,
L.
Cavaleri
,
D.
Greaves
, and
M.
Onorato
, “
Rogue waves in opposing currents: An experimental study on deterministic and stochastic wave trains
,”
J. Fluid Mech.
769
,
277
297
(
2015
).
30.
M.
Francius
and
C.
Kharif
, “
Two-dimensional stability of finite-amplitude gravity waves on water of finite depth with constant vorticity
,”
J. Fluid Mech.
830
,
631
659
(
2017
).
31.
B.
Liao
,
Y. X.
Ma
,
X. Z.
Ma
, and
G. H.
Dong
, “
Experimental study on the evolution of Peregrine breather with uniform-depth adverse currents
,”
Phys. Rev. E
97
,
053102
(
2018
).
32.
H.
Jeffreys
, “
On the formation of water waves by wind
,”
Proc. R. Soc. London, Ser. A
107
,
189
206
(
1925
).
33.
O. M.
Phillips
, “
On the generation of waves by turbulent wind
,”
J. Fluid Mech.
2
,
417
445
(
1957
).
34.
J. W.
Miles
, “
On the generation of surface waves by shear flows
,”
J. Fluid Mech.
3
,
185
204
(
1957
).
35.
J.
Touboul
,
J. P.
Giovanangeli
,
C.
Kharif
, and
E.
Pelinovsky
, “
Freak waves under the action of wind: Experiments and simulations
,”
Eur. J. Mech. B. Fluids
25
,
662
676
(
2006
).
36.
J.
Touboul
,
C.
Kharif
,
E.
Pelinovsky
, and
J. P.
Giovanangeli
, “
On the interaction of wind and steep gravity wave groups using Miles’ and Jeffreys’ mechanisms
,”
Nonlinear Processes Geophys.
15
,
1023
1031
(
2008
).
37.
C.
Kharif
,
J. P.
Giovanangeli
,
J.
Touboul
, and
E.
Pelinovsky
, “
Influence of wind on extreme wave events: Experimental and numerical approaches
,”
J. Fluid Mech.
594
,
209
247
(
2008
).
38.
S.
Yan
and
Q. W.
Ma
, “
Numerical simulation of interaction between wind and 2D freak waves
,”
Eur. J. Mech. B. Fluids
29
,
18
31
(
2010
).
39.
S.
Yan
and
Q. W.
Ma
, “
Improved model for air pressure due to wind on 2D freak waves in finite depth
,”
Eur. J. Mech. B. Fluids
30
,
1
11
(
2011
).
40.
S.
Yan
and
Q. W.
Ma
, “
Numerical study on significance of wind action on 2-D freak waves with different parameters
,”
J. Mar. Sci. Technol.
20
,
9
17
(
2012
).
41.
G. J.
Komen
,
L.
Cavaleri
,
M.
Donelan
,
K.
Hasselmann
,
S.
Hasselmann
, and
P. A. E. M.
Janssen
,
Dynamics and Modelling of Ocean Waves
(
Cambridge University Press
,
1994
).
42.
M. L.
Banner
and
J. B.
Song
, “
On determining the onset and strength of breaking for deep water waves. II. Influence of wind forcing and surface shear
,”
J. Phys. Oceanogr.
32
,
2559
2570
(
2002
).
43.
S.
Leblanc
, “
Amplification of nonlinear surface waves by wind
,”
Phys. Fluids
19
,
101705
(
2007
).
44.
S.
Leblanc
, “
Wind-forced modulations of finite-depth gravity waves
,”
Phys. Fluids
20
,
116603
(
2008
).
45.
C.
Kharif
,
R. A.
Kraenkel
,
M. A.
Manna
, and
R.
Thomas
, “
The modulational instability in deep water under the action of wind and dissipation
,”
J. Fluid Mech.
664
,
138
(
2010
).
46.
H.
Segur
,
D.
Henderson
,
J.
Carter
,
J.
Hammack
,
C. M.
Li
,
D.
Pheiff
, and
K.
Socha
, “
Stabilizing the Benjamin-Feir instability
,”
J. Fluid Mech.
539
,
229
271
(
2005
).
47.
A.
Chabchoub
,
N. P.
Hoffmann
,
H.
Branger
,
C.
Kharif
, and
N.
Akhmediev
, “
Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model
,”
Phys. Fluids
25
,
101704
(
2013
).
48.
D.
Eeltink
,
A.
Lemoine
,
H.
Branger
,
O.
Kimmoun
,
C.
Kharif
,
J. D.
Carter
,
A.
Chabchoub
,
M.
Brunetti
, and
J.
Kasparian
, “
Spectral up- and downshifting of Akhmediev breathers under wind forcing
,”
Phys. Fluids
29
,
107103
(
2017
).
49.
M.
Brunetti
,
N.
Marchiando
,
N.
Berti
, and
J.
Kasparian
, “
Nonlinear fast growth of water waves under wind forcing
,”
Phys. Lett. A
378
,
1025
1030
(
2014
).
50.
M.
Brunetti
and
J.
Kasparian
, “
Modulational instability in wind-forced waves
,”
Phys. Lett. A
378
,
3626
3630
(
2014
).
51.
M.
Onorato
and
D.
Proment
, “
Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves
,”
Phys. Lett. A
376
,
3057
3059
(
2012
).
52.
S. F.
Li
,
C. C.
Yu
,
S. H.
Qian
,
J. B.
Song
, and
A. Z.
Cao
, “
Interfacial waves modulated by linear shear flow of the upper layer in a two-layer fluid with arbitrary layer depths
,”
Phys. Fluids
33
,
042112
(
2021
).
53.
S. F.
Li
,
S. H.
Qian
,
H.
Chen
,
J. B.
Song
, and
A. Z.
Cao
, “
An extended nonlinear Schrödinger equation for water waves with linear shear flow, wind, and dissipation
,”
AIP Adv.
11
,
025326
(
2021
).
54.
B.
Liao
,
G. H.
Dong
,
Y. X.
Ma
,
X. Z.
Ma
, and
M.
Perlin
, “
Modified nonlinear Schrödinger equation for gravity waves with the influence of wind, currents, and dissipation
,”
Phys. Fluids
33
,
037103
(
2023
).
55.
M.
Brunetti
, “
Formation of rogue waves under forcing fields
,”
Swiss Phys. Soc. Commun.
47
,
26
28
(
2015
).
56.
C. W.
Curtis
,
J. D.
Carter
, and
H.
Kalisch
, “
Particle paths in nonlinear Schrödinger models in the presence of linear shear currents
,”
J. Fluid Mech.
855
,
322
350
(
2018
).
You do not currently have access to this content.