The wing rock phenomenon is a self-excited roll motion occurring on the aircraft at high angles of attack (AoAs), which negatively impact safety and maneuverability. The limit cycle oscillation is a typical characteristic of this self-excited roll motion. A controller employing a model-free training approach is constructed on the basis of deep reinforcement learning (DRL) to address this severe nonlinear control problem. For an 80° swept delta wing model, the analytical model describing the nonlinear behavior of wing rock is presented and implemented in the simulation environment. The DRL-based controller is trained with the proximal policy optimization algorithm. A reward function is carefully designed for training to achieve excellent convergence stability. Various simulations were conducted at a series of unlearned initial conditions (roll angles, AoAs) to demonstrate the effectiveness and generalization capability of the proposed method and verify and evaluate the performance of the trained DRL controller. Finally, the scenario that undergoes disturbance is added to confirm the effectiveness and robustness of the proposed DRL-based controller. Results show that the DRL-based controller could effectively regulate the oscillation and retain the capability to suppress the un-wanted behavior with favorable generalization capability and robustness. Therefore, delta wing rocking motion suppression based on DRL has powerful intelligent control performance and provides a new idea for predicting the evolution of aerodynamics in rocking motion suppression.

1.
Abdul-Kareem
,
A. I.
,
Hasan
,
A. F.
,
Al-Qassar
,
A. A.
et al, “
Rejection of wing-rock motion in delta wing aircraft based on optimal LADRC schemes with butterfly optimization algorithm
,”
J. Eng. Sci. Technol.
17
(
4
),
2476
2495
(
2022
).
2.
Al-Qassar
,
A. A.
,
Al-Obaidi
,
A. S. M.
,
Hasan
,
A. F
et al, “
Finite-time control of wing-rock motion for delta wing aircraft based on whale-optimization algorithm
,”
Indonesian J. Sci. Technol.
6
(
3
),
441
456
(
2021
).
3.
Anavatti
,
S. G.
,
Choi
,
J. Y.
, and
Wong
,
P. P.
, “
Design and implementation of fuzzy logic controller for wing rock
,”
Int. J. Control Autom. Syst.
2
(4),
494
500
(
2004
).
4.
Arena
,
A. S.
, Jr.
, “
An experimental and computational investigation of slender wings undergoing wing rock
,” Ph.D. dissertation (
University of Notre Dame
,
Indiana
,
1992
).
5.
Arena
,
A. J.
and
Nelson
,
R. C.
, “
The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing-rock motion
,” AIAA Paper No. 89–3348,
1989
.
6.
Arena
,
A. J.
and
Nelson
,
R. C.
, “
Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock
,” AIAA Paper No. 91–0434,
1991
.
7.
Brandon
,
J. M.
and
Nguyen
,
L. T.
, “
Experimental study of effects of forebody geometry on high angle of attack static and dynamic stability
,” in
Proceedings of AIAA 24th Aerospace Sciences Meeting
Reno, NV,
1986
.
8.
Cummings
,
R. M.
,
Forsythe
,
J. R.
,
Morton
,
S. A.
et al, “
Computational challenges in high angle of attack flow prediction
,”
Prog. Aerosp. Sci.
39
,
369
384
(
2003
).
9.
Go
,
T. H.
, “
Aircraft wing rock dynamics and control
,” Ph.D. thesis,
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
,
1999
.
10.
Guglieri
,
G.
and
Sartori
,
D.
, “
Design of a sliding mode control for wing rock suppression in highly-swept wing aircraft
,”
Int. J. Aerosp. Sci.
2
(1),
1
10
(
2013
).
11.
Helin
,
H. E.
and
Watry
,
C. W.
, “
Effects of trailing-edge jet entrainment on delta wing vortices
,”
AIAA J.
32
(
4
),
802
804
(
1994
).
12.
Hsu
,
C. F.
,
Lin
,
C. M.
, and
Chen
,
T. Y.
, “
Neural-network-identification-based adaptive control of wing rock motion
,”
IEEE Proc.: Control Theory Appl.
152
,
65
71
(
2005
).
13.
Humaidi
,
A. J.
and
Hameed
,
A. H.
, “
Robust MRAC for a wing rock phenomenon in delta wing aircrafts
,”
AUT J. Model. Simul.
49
(
1
),
113
122
(
2017
).
14.
Joshi
,
S. V.
,
Screenatha
,
A. J.
, and
Chandrasekhar
,
J.
, “
Suppression of wing rock of slender delta wings using a single neuron controller
,”
IEEE Trans. Control Syst. Technol.
6
,
671
677
(
1998
).
15.
Kandil
,
O.
and
Menzies
,
M.
, “
Effective control of computationally simulated wing rock in subsonic flow
,” AIAA Paper No. 97-0831,
1997
.
16.
Katz
,
J.
, “
Wing/vortex interactions and wing rock
,”
Prog. Aerosp. Sci.
35
,
727
750
(
1999
).
17.
Katz
,
J.
and
Levin
,
D.
, “
Static measurements of slender delta wing rolling moment hysteresis
,”
J. Aircr.
28
(
4
),
282
283
(
1991
).
18.
Khrabrov
,
A.
and
Zhuk
,
A.
, “
Using large amplitude free oscillations in pitch and roll to investigate unsteady aerodynamic characteristics at separated flow regimes
,”
ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities, Wright-Patterson AFB, OH, 18-21 July 1995
(
IEEE
,
1995
).
19.
Kingma
,
D. P.
and
Ba
,
J.
, “
Adam: A method for stochastic optimization
,” in
Proceedings of 3rd International Conference for Learning Representations
, San Diego (
2015
).
20.
Koch
,
W.
,
Mancuso
,
R.
,
West
,
R.
, and
Bestavros
,
A.
, “
Reinforcement learning for UAV attitude control
,” arXiv:1804.04154 (
2017
).
21.
Kooi
,
S. B. L.
, “
Dynamic recurrent neural networks for stable adaptive control of wing rock motion
,” Ph.D. thesis (
Concordia University
,
Montréal, Québec, Canada
,
1999
).
22.
Levin
,
D.
and
Katz
,
J.
, “
Self induced roll oscillations of low aspect ratio rectangular wings
,” AIAA Paper No. 90-2811 (
1990)
.
23.
Li
,
D.
,
Tsourdos
,
A.
,
Wang
,
Z.
, and
Ignatyev
,
D.
, “
Nonlinear analysis for wing-rock system with adaptive control
,”
J. Guid., Control, Dyn.
45
(
11
),
2174
2181
(
2022
).
24.
Liu
,
L.
,
Liu
,
Y. J.
,
Tong
,
S.
, and
Gao
,
Z.
, “
Relative threshold-based event-triggered control for nonlinear constrained systems with application to aircraft wing rock motion
,”
IEEE Trans. Ind. Inf.
18
(
2
),
911
921
(
2022
).
25.
Liu
,
Z. L.
and
Su
,
C. Y.
, “
Control of wing rock phenomenon with a variable universe fuzzy controller
,” in
Proceeding of the 2004 American Control Conference,
Boston, Massachusetts (
IEEE
,
2004
), pp.
1719
1724
.
26.
Liu
,
Z. L.
, “
Reinforcement adaptive fuzzy control of wing rock phenomena
,”
IEE Proc.: Control Theory Appl.
152
,
615
620
(
2005
).
27.
Nelson
,
R. C.
and
Arena
,
A. S.
, “
Experimental investigation of wing rock of slender wings and aircraft configurations
,” in
Fluid Dynamics of High Angle of Attack,
International Union of Theoretical and Applied Mechanics, edited by R. Kawamura and Y. Aihara (Springer, Berlin, Heidelberg, 1993), pp.
413
424
.
28.
Nelson
,
R. C.
and
Pelletier
,
A.
, “
The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers
,”
Prog. Aerosp. Sci.
39
,
185
248
(
2003
).
29.
Prudnikov
,
Y. A.
,
Karavayev
,
E. A.
, and
Rokmistrov
,
O. V.
, “
Wing rock of lifting systems
,”
International Council of the Aeronautical Sciences
Paper No. 92–4.7.1,
1992
.
30.
Riou
,
J.
,
Garnier
,
E.
, and
Basdevant
,
C.
, “
Blowing effects on the separated flow over a moderately swept missile fin
,”
AIAA J.
49
(
2
),
269
278
(
2011
).
31.
Rong
,
H. J.
,
Han
,
S.
, and
Zhao
,
G. S.
, “
Adaptive fuzzy control of aircraft wing-rock motion
,”
Appl. Soft Comput.
14
,
181
193
(
2014
).
32.
Roshanian
,
J.
and
Rahimzadeh
,
E.
, “
A generalization for model reference adaptive control and robust model reference adaptive control adaptive laws for a class of nonlinear uncertain systems with application to control of wing rock phenomenon
,”
Int. J. Eng., Trans. B
33
(
11
),
2372
2383
(
2020
).
33.
Schulman
,
J.
,
Levine
,
S.
, and
Moritz
,
P.
, “
Trust region policy optimization
,” arXiv:1502.05477 (
2015
).
34.
Schulman
,
J.
,
Wolski
,
F.
, and
Dhariwal
,
P.
, “
Proximal policy optimization algorithm
,” arXiv:1707.06347 (
2017
).
35.
Shang
,
W. L.
,
Chen
,
Y.
, and
Ochieng
,
W. Y.
, “
Resilience analysis of transport networks by combining variable message signs with agent-based day-to-day dynamic learning
,”
IEEE Access
8
,
104458
(
2020
).
36.
Sreenatha
,
A. G.
,
Patki
,
M. V.
, and
Joshi
,
S. V.
, “
Fuzzy logic control for wing-rock phenomenon
,”
Mech. Res. Commun.
27
,
359
364
(
2000
).
37.
Suarez
,
C. J.
,
Kramer
,
B. R.
,
Ayers
,
B.
et al, “
Forebody vortex control for suppressing wing rock on a highly swept wing configuration
,” AIAA Paper No. 92-2716-CP,
1992
.
38.
Sutton
,
R. S.
and
Barto
,
A. G.
,
Reinforcement Learning: An Introduction
(
MIT Press
,
Cambridge, Massachusetts, USA
,
2018
), pp.
58
59
.
39.
Wan
,
K. F.
,
Li
,
B.
,
Gao
,
X. G.
,
Hu
,
Z. J.
et al, “
A learning-based flexible autonomous motion control method for UAV in dynamic unknown environments
,”
J. Syst. Eng. Electron.
32
(
6
),
1490
1508
(
2021
).
40.
Wang
,
Q. M.
,
Feng
,
L. H.
, and
Li
,
X.
, “
Experimental investigation of synthetic jet control of wing rock for a flying wing aircraft
,”
Phys. Fluids
35
(
5
),
054111
(
2023
).
You do not currently have access to this content.