Atomistic simulations are employed to investigate the dynamics of shock-induced bubble collapse in water. Two types of bubbles (an empty bubble and a bubble filled with N2 gas) in water are considered in this study. Apart from the manifestation of a rise in temperature and pressure due to implosion energy released upon bubble collapse; distinct differences in response could be observed for the case of empty bubble to that of the case of the bubble with N2 gas. It is observed that the mechanism of the bubble associated with bubble dissociation as well as the time taken for collapse are changed with the introduction of N2 gas within the bubble. Numerous new chemical species are also observed as the N2 within the bubble reacts with water molecules upon shock compression which can be correlated with the differences in observation between an empty bubble system and a system containing N2 gas. This study is anticipated to lead to further improvements in continuum theories for cavitation bubble collapse in which the effects of chemical reactions need to be incorporated.

1.
S.
Okovytvy
,
Y.
Kholod
,
M.
Qasim
,
H.
Fredrickson
, and
J.
Leszczynski
, “
The mechanism of unimolecular decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study
,”
J. Phys. Chem. A
109
,
2964
(
2005
).
2.
D.
Chakraborty
,
R.
Muller
,
S.
Dasgupta
, and
W.
Goddard
, “
The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study
.
III,” J. Phys. Chem. A
104
,
2261
(
2000
).
3.
T.
Geers
and
K.
Hunter
, “
An integrated wave-effects model for an underwater explosion bubble
,”
J. Acoust. Soc. Am.
111
,
1584
(
2002
).
4.
C.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
).
5.
A.
Prosperetti
and
A.
Lezzi
, “
Bubble dynamics in a compressible liquid. I. First-order theory
,”
J. Fluid Mech.
168
,
457
(
1986
).
6.
D.
Kim
and
D.
Kim
, “
Underwater bubble collapse on a ridge-patterned structure
,”
Phys. Fluids
32
,
053312
(
2020
).
7.
Y.
Sun
,
Z.
Yao
,
H.
Wen
,
Q.
Zhong
, and
F.
Wang
, “
Cavitation bubble collapse in a vicinity of a rigid wall with a gas entrapping hole
,”
Phys. Fluids
34
,
073314
(
2022
).
8.
T.-H.
Phan
,
E.
Kadivar
,
V.-T.
Nguyen
,
O.
el Moctar
, and
W.-G.
Park
, “
Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions
,”
Phys. Fluids
34
,
023318
(
2022
).
9.
N.
Apazidis
, “
Numerical investigation of shock induced bubble collapse in water
,”
Phys. Fluids
28
,
046101
(
2016
).
10.
S.
Li
,
A.
Zhang
, and
R.
Han
, “
Transient interaction between a particle and an attached bubble with an application to cavitation in silt-laden flow
,”
Phys. Fluids
30
,
082111
(
2018
).
11.
X.
Yang
,
C.
Liu
,
D.
Wan
, and
C.
Hu
, “
Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall
,”
Phys. Fluids
33
,
073311
(
2021
).
12.
Q.-T.
Nguyen
,
V.-T.
Nguyen
,
T.-H.
Phan
,
T.-N.
Duy
,
S.-H.
Park
, and
W.-G.
Park
, “
Numerical study of dynamics of cavitation bubble collapse near oscillating walls
,”
Phys. Fluids
35
,
013306
(
2023
).
13.
D.
Zhao
,
F.
Deng
, and
L.
Zhang
, “
Fluctuation-driven instability of nanoscale liquid films on chemically heterogeneous substrates
,”
Phys. Fluids
35
,
072016
(
2023
).
14.
M.
Vedadi
,
A.
Choubey
,
K.-I.
Nomura
,
R.
Kalia
,
A.
Nakano
,
P.
Vashishta
, and
A.
Van Duin
, “
Structure and dynamics of shock-induced nanobubble collapse in water
,”
Phys. Rev. Lett.
105
,
014503
(
2010
).
15.
A.
Choubey
,
M.
Vedadi
,
K-i
Nomura
,
R. K.
Kalia
,
A.
Nakano
, and
P.
Vashishta
, “
Poration of lipid bilayers by shock-induced nanobubble collapse
,”
Appl. Phys. Lett.
98
,
023701
(
2011
).
16.
S.
Zhan
,
H.
Duan
,
L.
Pan
,
J.
Tu
,
D.
Jia
,
T.
Yang
, and
J.
Li
, “
Molecular dynamics simulation of shock-induced microscopic bubble collapse
,”
Phys. Chem. Chem. Phys.
23
,
8446
(
2021
).
17.
M.
Ghoohestani
,
S.
Rezaee
,
E.
Kadivar
, and
O.
el Moctar
, “
Thermodynamic effects on nanobubble's collapse-induced erosion using molecular dynamic simulation
,”
Phys. Fluids
35
,
073319
(
2023
).
18.
C.
Ohl
and
R.
Ikink
, “
Shock-wave-induced jetting of micron-size bubbles
,”
Phys. Rev. Lett.
90
,
214502
(
2003
).
19.
R.
Cole
,
Underwater Explosions
(
Princeton University Press
,
1948
).
20.
P.
Cooper
,
Explosives Engineering
(
Wiley VCH, Inc
.,
1997
).
21.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
22.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
23.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
(
1986
).
24.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
25.
B. L.
Holian
and
P. S.
Lomdahl
, “
Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations
,”
Science
280
,
2085
(
1998
).
26.
B. L.
Holian
,
W. G.
Hoover
,
B.
Moran
, and
G. K.
Straub
, “
Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics
,”
Phys. Rev. A
22
,
2798
(
1980
).
27.
B. L.
Holian
, “
Modeling shock-wave deformation via molecular dynamics
,”
Phys. Rev. A
37
,
2562
(
1988
).
28.
A. V.
Bolesta
,
L.
Zheng
,
D. L.
Thompson
, and
T. D.
Sewell
, “
Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane
,”
Phys. Rev. B
76
,
224108
(
2007
).
29.
V. V.
Zhakhovsky
,
M. M.
Budzevich
,
N. A.
Inogamov
,
I. I.
Oleynik
, and
C. T.
White
, “
Two-zone elastic-plastic single shock waves in solids
,”
Phys. Rev. Lett.
107
,
135502
(
2011
).
30.
A.
Neogi
and
N.
Mitra
, “
A metastable phase of shocked bulk single crystal copper: An atomistic simulation study
,”
Sci. Rep.
7
,
7337
(
2017
).
31.
A.
Neogi
,
L.
He
, and
N.
Abdolrahim
, “
Atomistic simulations of shock compression of single crystal and core-shell Cu at Ni nanoporous metals
,”
J. Appl. Phys.
126
,
015901
(
2019
).
32.
A. C.
Van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
, “
ReaxFF: A reactive force field for hydrocarbons
,”
J. Phys. Chem. A
105
,
9396
(
2001
).
33.
A. C.
Van Duin
,
Y.
Zeiri
,
F.
Dubnikova
,
R.
Kosloff
, and
W. A.
Goddard
, “
Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide
,”
J. Am. Chem. Soc.
127
,
11053
(
2005
).
34.
A.
Strachan
,
E. M.
Kober
,
A. C.
Van Duin
,
J.
Oxgaard
, and
W. A.
Goddard
III
, “
Thermal decomposition of RDX from reactive molecular dynamics
,”
J. Chem. Phys.
122
,
054502
(
2005
).
35.
T. P.
Senftle
,
S.
Hong
,
M. M.
Islam
,
S. B.
Kylasa
,
Y.
Zheng
,
Y. K.
Shin
,
C.
Junkermeier
,
R.
Engel-Herbert
,
M. J.
Janik
,
H. M.
Aktulga
et al, “
The ReaxFF reactive force-field: Development, applications and future directions
,”
npj Comput. Mater.
2
,
15011
(
2016
).
36.
N.
Mitra
,
P.
Sarkar
,
S.
Deb
, and
S.
Basu Majumdar
, “
Multiscale estimation of elastic constants of hydrated cement
,”
J. Eng. Mech. ASCE
145
,
04019014
(
2019
).
37.
P.
Sarkar
and
N.
Mitra
, “
Thermal conductivity of cement paste: Influence of macro-porosity
,”
Cem. Concr. Res.
143
,
106385
(
2021
).
38.
N.
Mitra
,
P.
Sarkar
, and
D.
Prasad
, “
Intermolecular dynamics of ultraconfined interlayer water in tobermorite: Influence on mechanical performance
,”
Phys. Chem. Chem. Phys.
21
,
11416
(
2019
).
39.
P.
Sarkar
and
N.
Mitra
, “
Role of confined interstitial water in compressive response of calcium sulfate (CaSO4.n H2O) [n = 0,0.5,1]
,”
J. Solid State Chem.
274
,
188
(
2019
).
40.
P.
Sarkar
,
N.
Mitra
, and
D.
Prasad
, “
Molecular level deformation mechanism of ettringite
,”
Cem. Concr. Res.
124
,
105836
(
2019
).
41.
P.
Sarkar
and
N.
Mitra
, “
Gypsum under tensile loading: A molecular dynamics study
,”
Constr. Build. Mater.
201
,
1
(
2019
).
42.
P.
Sarkar
and
N.
Mitra
, “
Molecular deformation response of portlandite under compressive loading
,”
Constr. Build. Mater.
274
,
122020
(
2021
).
43.
P.
Sarkar
and
N.
Mitra
, “
Molecular level study of uni/multi-axial deformation response of tobermorite 11 Å: A force field comparison study
,”
Cem. Concr. Res.
145
,
106451
(
2021
).
44.
D.
Prasad
,
N.
Mitra
, and
S.
Bandyopadhyay
, “
Intermolecular dynamics of water: Suitability of reactive interatomic potential
,”
J. Phys. Chem. B
123
,
6529
(
2019
).
45.
S.
Pal
and
N.
Mitra
, “
Shock wave propagation through air: A reactive molecular dynamics study
,”
Proc. R. Soc. A
477
,
20200676
(
2021
).
46.
D.
Prasad
and
N.
Mitra
, “
Silica dimerization in the presence of divalent cations
,”
Phys. Chem. Chem. Phys.
24
,
21308
(
2022
).
47.
D.
Prasad
and
N.
Mitra
, “
Catalytic behavior of hydrogen bonded water in oligomerization of silicates
,”
Inorg. Chem.
62
,
1423
(
2023
).
48.
A.
Neogi
and
N.
Mitra
, “
Shock induced phase transition of water: Molecular dynamics investigation
,”
Phys. Fluids
28
,
027104
(
2016
).
49.
D.
Prasad
and
N.
Mitra
, “High-temperature and high-pressure plastic phase of ice at the boundary of liquid water and ice VII”
Proc. R. Soc. A
478
,
20210958
(
2022
).
50.
O.
Rahaman
,
A. C.
Van Duin
,
W. A.
Goddard
III
, and
D. J.
Doren
, “
Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization
,”
J. Phys. Chem. B
115
,
249
(
2011
).
51.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
).
52.
A.
Hoy
and
P. R.
Bunker
, “
A precise solution of the rotation bending Schrödinger equation for a triatomic molecule with application to the water molecule
,”
J. Mol. Spectrosc.
74
(
1
),
1
(
1979
).
53.
K.-P.
Huber
,
Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules
(
Springer Science and Business Media
,
2013
).
54.
J. M.
Walsh
and
M. H.
Rice
, “
Dynamic compression of liquids from measurements on strong shock waves
,”
J. Chem. Phys.
26
,
815
(
1957
).
55.
D.
Tildesley
and
M.
Allen
,
Computer Simulation of Liquids
(
Clarendon
,
1987
).
56.
A.
Mitchell
and
W.
Nellis
, “
Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range
,”
J. Chem. Phys.
76
,
6273
(
1982
).
57.
N.
Goldman
,
E. J.
Reed
,
I.-F. W.
Kuo
,
L. E.
Fried
,
C. J.
Mundy
, and
A.
Curioni
, “
Ab initio simulation of the equation of state and kinetics of shocked water
,”
J. Chem. Phys.
130
,
124517
(
2009
).
58.
R. D.
Johnson
III
, NIST 101. Computational Chemistry Comparison and Benchmark Database (NIST, 1999).
59.
R.
Ghoshal
and
N.
Mitra
, “
Non-contact near-field underwater explosion induced shock-wave loading of submerged rigid structures: Nonlinear compressibility effects in fluid structure interaction
,”
J. Appl. Phys.
112
,
024911
(
2012
).
60.
R.
Ghoshal
and
N.
Mitra
, “
Underwater explosion induced shock loading of structures: Influence of water depth, salinity and temperature
,”
Ocean Eng.
126
,
22
(
2016
).
61.
R.
Ghoshal
and
N.
Mitra
, “
Underwater oblique shock wave reflection
,”
Phys. Rev. Fluids
3
,
013403
(
2018
).
62.
R.
Ghoshal
and
N.
Mitra
, “
Underwater oblique shock wave reflection from submerged hydraulic structures
,”
Ocean Eng.
209
,
107324
(
2020
).
63.
R.
Ghoshal
and
N.
Mitra
, “
High-intensity air-explosion-induced shock loading of structures: Consideration of a real gas in modelling a nonlinear compressible medium
,”
Proc. R. Soc. London, Ser. A
471
,
20140825
(
2015
).
64.
P.
Wen
,
G.
Tao
,
D. E.
Spearot
, and
S. R.
Phillpot
, “
Molecular dynamics simulation of the shock response of materials: A tutorial
,”
J. Appl. Phys.
131
,
051101
(
2022
).
65.
S.
Rawat
,
M.
Warrier
,
S.
Chaturvedi
, and
V.
Chavan
, “
Effect of material damage on the spallation threshold of single crystal copper: A molecular dynamics study
,”
Modell. Simul. Mater. Sci. Eng.
20
,
015012
(
2011
).
66.
S.
Rawat
and
N.
Mitra
, “
10 1 ¯ 2 twinning in single-crystal titanium under shock loading
,”
Philos. Mag.
101
,
836
(
2021
).
67.
S. C.
Farantos
, “
Hamiltonian classical thermodynamics and chemical kinetics
,”
Physica D
417
,
132813
(
2021
).
68.
E.
Fried
,
L.
Anand
, and
M. E.
Gurtin
,
The Mechanics and Thermodynamics of Continua
(
Cambridge University Press
,
2010
).
69.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
34
,
94
(
1917
).
70.
M. S.
Plesset
, The Dynamics of Cavitation Bubbles (American Society of Mechanical Engineers, 1949).
You do not currently have access to this content.