For bloodstain pattern analysis (BPA), interpreting statistically reliable data on a crime scene resulting from gunshots is a great challenge. This is due to various uncertainties, including blood rheology, hematocrit, coagulation, surrounding atmospheric conditions, victim's peculiarities, gun types, geometries, etc. In addition, muzzle (propellant) gases that follow the bullet may influence the aerodynamics of blood spatter in the cases of short-range shooting. We studied the muzzle gas effect on forward blood spatter. Muzzle gas can penetrate the wound channel and be ejected from the bullet exit hole affecting the forward blood spatter. Experiments with blood atomization by a gas flow issued from a supersonic de Laval converging–diverging nozzle are conducted. Defibrinated sheep blood was enclosed in a thin solid cylinder, which was filled by a supersonic air flow ejected from a de Laval nozzle, mimicking the muzzle gas flow through a wound channel. The mass flow rate of the supersonic air stream was varied by controlling the upstream chamber pressure. It was found that the number counts of the forward blood spatter from the muzzle gas blasting peaked at relatively shorter distances from the exit hole compared to the one that would be caused by a bullet. The effects of the muzzle gas and bullet could cause the formation of a bimodal spatter distribution on the floor behind the exit hole. These findings imply that atomization events owing to muzzle gas cause coarser atomization than that of a bullet, which could facilitate BPA in distinguishing certain homicides from staged suicides.

1.
S.
Weidman
,
Strengthening Forensic Science in the United States: A Path Forward
(
National Academies Press
,
2009
).
2.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017
).
3.
D.
Attinger
,
C.
Moore
,
A.
Donaldson
,
A.
Jafari
, and
H. A.
Stone
, “
Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities
,”
Forensic Sci. Int.
231
,
375
(
2013
).
4.
W. F.
Rowe
, “
Errors in the determination of the point of origin of bloodstains
,”
Forensic Sci. Int.
161
,
47
(
2006
).
5.
K. G.
de Bruin
,
R. D.
Stoel
, and
J. C.
Limborgh
, “
Improving the point of origin determination in bloodstain pattern analysis
,”
J. Forensic Sci.
56
,
1476
(
2011
).
6.
N.
Behrooz
,
L.
Hulse‐Smith
, and
S.
Chandra
, “
An evaluation of the underlying mechanisms of bloodstain pattern analysis error
,”
J. Forensic Sci.
56
,
1136
(
2011
).
7.
M.
Illes
,
A.
Carter
,
P.
Laturnus
, and
A.
Yamashita
, “
Use of the Backtrack™ computer program for bloodstain pattern analysis of stains from downward-moving drops
,”
Can. Soc. Forensic Sci. J.
38
,
213
(
2005
).
8.
A.
Carter
, “
The directional analysis of bloodstain patterns theory and experimental validation
,”
Can. Soc. Forensic Sci. J.
34
,
173
(
2001
).
9.
R.
Kanable
, “
BackTrack going forward
,”
Law Enforcement Technol.
33
,
40
(
2006
).
10.
A.
Carter
,
J.
Forsythe-Erman
,
V.
Hawkes
,
M.
Illes
et al., “
Validation of the BackTrack suite of programs for bloodstain pattern analysis
,”
J. Forensic Identif.
56
,
242
(
2006
).
11.
A.
Carter
,
M.
Illes
,
K.
Maloney
,
A.
Yamashita
,
B.
Allen
,
B.
Brown
,
L.
Davidson
,
G.
Ellis
,
J.
Gallant
,
A.
Gradkowski
et al., “
Further validation of the BackTrackTM computer program for bloodstain pattern analysis: Precision and accuracy
,”
IABPA News
21
,
15
(
2005
).
12.
S.
De Gruttola
,
K.
Boomsma
, and
D.
Poulikakos
, “
Computational simulation of a non‐Newtonian model of the blood separation process
,”
Artif. Organs
29
,
949
(
2005
).
13.
S.
Charm
and
G.
Kurland
, “
Viscometry of human blood for shear rates of 0–100,000 sec−1
,”
Nature
206
,
617
(
1965
).
14.
A.
Kolbasov
,
P. M.
Comiskey
,
R. P.
Sahu
,
S.
Sinha-Ray
,
A. L.
Yarin
,
B. S.
Sikarwar
,
S.
Kim
,
T. Z.
Jubery
, and
D.
Attinger
, “
Blood rheology in shear and uniaxial elongation
,”
Rheol. Acta
55
,
901
(
2016
).
15.
S.
Chien
,
R.
King
,
R.
Skalak
,
S.
Usami
, and
A.
Copley
, “
Viscoelastic properties of human blood and red cell suspensions
,”
Biorheology
12
,
341
(
1975
).
16.
A.
Copley
,
R.
King
,
S.
Chien
,
S.
Usami
,
R.
Skalak
, and
C.
Huang
, “
Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear
,”
Biorheology
12
,
257
(
1975
).
17.
M.
Brust
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P.
Arratia
, and
C.
Wagner
, “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
(
2013
).
18.
C.
Picart
,
J.-M.
Piau
,
H.
Galliard
, and
P.
Carpentier
, “
Human blood shear yield stress and its hematocrit dependence
,”
J. Rheol.
42
,
1
(
1998
).
19.
C.
Clasen
,
J.
Bico
,
V.
Entov
, and
G. H.
Mckinley
, “‘
Gobbling drops’: The jetting–dripping transition in flows of polymer solutions
,”
J. Fluid Mech.
636
,
5
(
2009
).
20.
D. D.
Joseph
,
J.
Belanger
, and
G.
Beavers
, “
Breakup of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
25
,
1263
(
1999
).
21.
F.
Mighri
,
P.
Carreau
, and
A.
Ajji
, “
Influence of elastic properties on drop deformation and breakup in shear flow
,”
J. Rheol.
42
,
1477
(
1998
).
22.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
(
2006
).
23.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
(
1993
).
24.
V.
Bertola
, “
An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids
,”
Int. J. Heat Mass Transfer
52
,
1786
(
2009
).
25.
T.
Jiang
,
J.
Ouyang
,
B.
Yang
, and
J.
Ren
, “
The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate
,”
Comput. Mech.
45
,
573
(
2010
).
26.
J.
Cooper-White
,
R.
Crooks
, and
D.
Boger
, “
A drop impact study of worm-like viscoelastic surfactant solutions
,”
Colloids Surf.
210
,
105
(
2002
).
27.
A.
Carré
,
J.-C.
Gastel
, and
M. E.
Shanahan
, “
Viscoelastic effects in the spreading of liquids
,”
Nature
379
,
432
(
1996
).
28.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Courier Corporation
,
2013
).
29.
M. T.
Murzabaeb
and
A. L.
Yarin
, “
Dynamics of sprinkler jets
,”
Fluid Dyn.
20
,
715
(
1986
).
30.
I.
Roisman
,
L.
Araneo
, and
C.
Tropea
, “
Effect of ambient pressure on penetration of a diesel spray
,”
Int. J. Multiphase Flow
33
,
904
(
2007
).
31.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
32.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman Scientific & Technical
,
New York
,
1993
).
33.
A. L.
Yarin
,
I. V.
Roisman
,
K.
Weber
, and
V.
Hohler
, “
Model for ballistic fragmentation and behind-armor debris
,”
Int. J. Impact Eng.
24
,
171
(
2000
).
34.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of forward blood spattering caused by a bullet of general shape
,”
Phys. Fluids
31
,
084103
(
2019
).
35.
N.
Sliefert
,
G.
Li
,
J. B.
Michael
, and
A. L.
Yarin
, “
Experimental and numerical study of blood backspatter interaction with firearm propellant gases
,”
Phys. Fluids
33
,
043319
(
2021
).
36.
R.
Courant
and
K. O.
Friedrichs
,
Supersonic Flow and Shock Waves
(
Springer Science & Business Media
,
1999
).
37.
G.
Klingenberg
, “
Investigation of combustion phenomena associated with the flow of hot propellant gases. III: Experimental survey of the formation and decay of muzzle flow fields and of pressure measurements
,”
Combust. Flame
29
,
289
(
1977
).
38.
P.
Comiskey
and
A. L.
Yarin
, “
Self-similar turbulent vortex rings: Interaction of propellant gases with blood backspatter and the transport of gunshot residue
,”
J. Fluid Mech.
876
,
859
(
2019
).
39.
G.
Li
,
N.
Sliefert
,
J. B.
Michael
, and
A. L.
Yarin
, “
Blood backspatter interaction with propellant gases
,”
Phys. Fluids
33
,
043318
(
2021
).
40.
P.
Eggins
and
D.
Jackson
, “
Laser-Doppler velocity measurements in an under-expanded free jet
,”
J. Phys. D: Appl. Phys.
7
,
1894
(
1974
).
41.
M. C.
Taylor
,
T. L.
Laber
,
B. P.
Epstein
,
D. S.
Zamzow
, and
D. P.
Baldwin
, “
The effect of firearm muzzle gases on the backspatter of blood
,”
Int. J. Leg. Med.
125
,
617
(
2011
).
42.
P.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
High-speed video analysis of forward and backward spattered blood droplets
,”
Forensic Sci. Int.
276
,
134
(
2017
).
43.
P.
Comiskey
,
A. L.
Yarin
,
S.
Kim
, and
D.
Attinger
, “
Prediction of blood back spatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
44.
G.
Radford
,
M. C.
Taylor
,
J.
Kieser
,
J. N.
Waddell
,
K.
Walsh
,
J.
Schofield
,
R.
Das
, and
E.
Chakravorty
, “
Simulating backspatter of blood from cranial gunshot wounds using pig models
,”
Int. J. Leg. Med.
130
,
985
(
2016
).
45.
L. G.
Loitsyanskii
,
Mechanics of Liquids and Gases
(Elsevier Science
,
Amsterdam, The Nethelands
,
2014
).
46.
J. D.
Mattingly
,
Elements of Gas Turbine Propulsion
(
McGraw-Hill
,
New York, USA
,
1996
).
47.
K.
Chen
,
J. B.
Michael
, and
A. L.
Yarin
, “
Effect of secondary atomization on blood backspatter affected by muzzle gases
,”
Phys. Fluids
35
,
044115
(
2023
).
48.
A. L.
Yarin
,
I. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge, England
,
2017
).
You do not currently have access to this content.