Oscillating water column (OWC) devices with Helmholtz resonator features are analyzed with semi-analytical, numerical, and experimental techniques. Conventionally, an OWC is a type of wave energy converter that consists of a duct with one end submerged, where the device's peak frequency is tuned by the length of the submerged duct. This leads to large devices when the desired peak frequency is low. The size of a conventional OWC can be reduced significantly by synthesizing features of Helmholtz resonators into it, such as using a narrow entrance. When integrated with a breakwater, it has been shown that the Helmholtz-type OWC can generate power while protecting the coastline from low-frequency ocean waves, making them dual-purpose. A systematic study of dual-purpose offshore Helmholtz-type OWC is still wanting. This study considers offshore “buoy-like” Helmholtz-type OWCs by a fast and heuristic semi-analytical model, which incorporated viscosity-related damping by empirical terms. The model shows that the Helmholtz-type OWCs have the potential to protect the coastline from low-frequency (long wavelength) waves, by producing a wide wave shadow behind them. The semi-analytical model is validated against the boundary element method (BEM), as well as experiments. The first experiment compares a Helmholtz-type OWC and a conventional OWC of the same size but different peak frequencies; the second compares a larger conventional OWC with a smaller Helmholtz OWC, which is tuned to have the same peak frequency as the former. In both cases, the semi-analytical model and the results from BEM agree well with the experiments.

1.
R.
Manasseh
,
Fluid Waves
(
CRC Press
,
2021
).
2.
W.
Sheng
,
R.
Alcorn
, and
A.
Lewis
, “
Assessment of primary energy conversions of oscillating water columns. I. Hydrodynamic analysis
,”
J. Renewable Sustainable Energy
6
,
053113
(
2014
).
3.
A. F.
Falcão
,
J. C.
Henriques
, and
J. J.
Cândido
, “
Dynamics and optimization of the OWC spar buoy wave energy converter
,”
Renewable Energy
48
,
369
381
(
2012
).
4.
C.
Leach
,
B. S.
Hague
,
D. M.
Kennedy
,
R. C.
Carvalho
, and
D.
Ierodiaconou
, “
Identifying oceanographic conditions conducive to coastal impacts on temperate open coastal beaches
,”
Nat. Hazards
109
,
499
521
(
2021
).
5.
J.
Liu
,
A.
Meucci
,
Q.
Liu
,
A. V.
Babanin
,
D.
Ierodiaconou
,
X.
Xu
, and
I. R.
Young
, “
A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast
,”
Renewable Energy
215
,
118943
(
2023
).
6.
C.
Wang
and
Y.
Zhang
, “
Wave power extraction analysis for an oscillating water column device with various surging lip-walls
,”
Ocean Eng.
220
,
108483
(
2021
).
7.
C.
Wang
,
Y.
Zhang
, and
Z.
Deng
, “
Semi-analytical study on the wave power extraction of a bottom-seated oscillating water column device with a pitching front lip-wall
,”
J. Fluids Struct.
105
,
103350
(
2021
).
8.
T.
Vinje
, “
An approach to the non-linear solution of the oscillating water column
,”
Appl. Ocean Res.
13
,
18
36
(
1991
).
9.
P.
Boccotti
, “
Caisson breakwaters embodying an OWC with a small opening–Part i: Theory
,”
Ocean Eng.
34
,
806
819
(
2007
).
10.
P.
Boccotti
, “
Comparison between a U-OWC and a conventional OWC
,”
Ocean Eng.
34
,
799
805
(
2007
).
11.
G.
Malara
and
F.
Arena
, “
Analytical modelling of an U-oscillating water column and performance in random waves
,”
Renewable Energy
60
,
116
126
(
2013
).
12.
G.
Malara
,
R.
Gomes
,
F.
Arena
,
J.
Henriques
,
L.
Gato
, and
A.
Falcão
, “
The influence of three-dimensional effects on the performance of U-type oscillating water column wave energy harvesters
,”
Renewable Energy
111
,
506
522
(
2017
).
13.
G.
Nunes
,
D.
Valério
,
P.
Beirão
, and
J. S.
Da Costa
, “
Modelling and control of a wave energy converter
,”
Renewable Energy
36
,
1913
1921
(
2011
).
14.
M.
Gradowski
,
M.
Alves
,
R. P.
Gomes
, and
J.
Henriques
, “
Integration of a hydrodynamic negative spring concept into the OWC spar buoy
,” in
Proceedings of the 12th European Wave and Tidal Energy Conference
, August
2017
.
15.
H.
Jin
,
H.
Zhang
, and
D.
Xu
, “
Array buoys with nonlinear stiffness enhance low-frequency wave attenuation and energy capture
,”
Phys. Fluids
34
,
127106
(
2022
).
16.
H.
Jin
,
H.
Zhang
,
D.
Xu
,
D.
Jun
, and
S.
Ze
, “
Low-frequency energy capture and water wave attenuation of a hybrid WEC-breakwater with nonlinear stiffness
,”
Renewable Energy
196
,
1029
1047
(
2022
).
17.
H.
Zhang
,
P.
Li
,
H.
Jin
,
R.
Bi
, and
D.
Xu
, “
Nonlinear wave energy dissipator with wave attenuation and energy harvesting at low frequencies
,”
Ocean Eng.
266
,
112935
(
2022
).
18.
X.
Zhang
,
H.
Zhang
,
X.
Zhou
, and
Z.
Sun
, “
Recent advances in wave energy converters based on nonlinear stiffness mechanisms
,”
Appl. Math. Mech.
43
,
1081
1108
(
2022
).
19.
Lord
Rayleigh
, “
The theory of the Helmholtz resonator
,”
Proc. R. Soc. London, Ser. A
92
(638),
265
275
(
1916
).
20.
L.-P.
Euvé
,
K.
Pham
,
P.
Petitjeans
,
V.
Pagneux
, and
A.
Maurel
, “
Time domain modelling of a Helmholtz resonator analogue for water waves
,”
J. Fluid Mech.
920
,
A22
(
2021
).
21.
L.-P.
Euvé
,
N.
Piesniewska
,
A.
Maurel
,
K.
Pham
,
P.
Petitjeans
, and
V.
Pagneux
, “
Control of the swell by an array of Helmholtz resonators
,”
Crystals
11
,
520
(
2021
).
22.
E.
Monsalve
,
A.
Maurel
,
P.
Petitjeans
, and
V.
Pagneux
, “
Perfect absorption of water waves by linear or nonlinear critical coupling
,”
Appl. Phys. Lett.
114
,
013901
(
2019
).
23.
L. G.
Bennetts
,
M. A.
Peter
, and
R. V.
Craster
, “
Graded resonator arrays for spatial frequency separation and amplification of water waves
,”
J. Fluid Mech.
854
,
R4
(
2018
).
24.
X.
Zhao
,
Y.
Li
,
Q.
Zou
,
D.
Han
, and
J.
Geng
, “
Long wave absorption by a dual purpose Helmholtz resonance OWC breakwater
,”
Coastal Eng.
178
,
104203
(
2022
).
25.
D.
Tothova
,
R.
Manasseh
, and
S.
Sannasiraj
, “
Identification of an initial non-linear transition in reciprocating finite-length pipe flow
,”
Phys. Fluids
33
,
125111
(
2021
).
26.
L.
Cui
,
R.
Manasseh
,
J. S.
Leontini
, and
D.
Tothova
, “
Nonlinear dynamics of reciprocating pipe flow in relation to oscillating water column wave energy converters
,”
in Proceedings of the 23rd Australasian Fluid Mechanics Conference
(
2022
).
27.
G.
Moretti
,
G. P.
Rosati Papini
,
L.
Daniele
,
D.
Forehand
,
D.
Ingram
,
R.
Vertechy
, and
M.
Fontana
, “
Modelling and testing of a wave energy converter based on dielectric elastomer generators
,”
Proc. R. Soc. A
475
,
20180566
(
2019
).
28.
J.
Falnes
and
J.
Hals
, “
Heaving buoys, point absorbers and arrays
,”
Philos. Trans. R. Soc., A
370
,
246
277
(
2012
).
29.
M.
Hasan
,
R.
Manasseh
, and
J.
Leontini
, “
Energy loss and developing length during reciprocating flow in a pipe with a free-end
,”
Phys. Fluids
32
,
083602
(
2020
).
30.
M.
Hasan
,
R.
Manasseh
, and
J.
Leontini
, “
Analytic representations of dissipation in partially-submerged reciprocating pipe flow
,”
Eur. J. Mech.-B/Fluids
75
,
97
104
(
2019
).
31.
J.
Falnes
and
A.
Kurniawan
,
Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction
(
Cambridge University Press
,
2020
), Vol.
8
.
32.
A.
Kurniawan
,
J.
Hals
, and
T.
Moan
, “
Modelling and simulation of a floating oscillating water column
,” in
Proceedings of 30th International Conference on Offshore Mechanics and Arctic Engineering
(
ASME
,
2011
), Vol.
44373
, pp.
395
406
.
33.
D. L.
Bull
and
E.
Johnson
, “
Optimal resistive control strategy for a floating OWC device considering both the oscillating structure and the oscillating water column
,” Technical Report No. SAND2013-3670C, Sandia National Lab. (SNL-NM), Albuquerque, NM, USA,
2013
.
34.
P.
Justino
, “
Mathematical modeling of a non-axisymmetric floating OWC
,” in
Progress in Renewable Energies Offshore: Proceedings of the 2nd International Conference on Renewable Energies Offshore (RENEW2016), Lisbon, Portugal, 24–26 October 2016
(
CRC Press
,
2016
), p.
335
.
35.
M. E.
McCormick
,
Ocean Engineering Mechanics: With Applications
(
Cambridge University Press
,
2009
).
36.
H. B.
Bingham
,
D.
Ducasse
,
K.
Nielsen
, and
R.
Read
, “
Hydrodynamic analysis of oscillating water column wave energy devices
,”
J. Ocean Eng. Mar. Energy
1
,
405
419
(
2015
).
37.
H. B.
Bingham
,
Y.-H.
Yu
,
K.
Nielsen
,
T. T.
Tran
,
K.-H.
Kim
,
S.
Park
,
K.
Hong
,
H. A.
Said
,
T.
Kelly
,
J. V.
Ringwood
et al, “
Ocean energy systems wave energy modeling task 10.4: Numerical modeling of a fixed oscillating water column
,”
Energies
14
,
1718
(
2021
).
38.
C.-H.
Lee
, “
WAMIT theory manual
,” MIT Report No. 95-2,
1995
.
39.
A. F.
Falcão
and
J. C.
Henriques
, “
Oscillating-water-column wave energy converters and air turbines: A review
,”
Renewable Energy
85
,
1391
1424
(
2016
).
40.
M.
Rosati
,
J.
Henriques
, and
J.
Ringwood
, “
Oscillating-water-column wave energy converters: A critical review of numerical modelling and control
,”
Energy Convers. Manage.: X
16
,
100322
(
2022
).
41.
L.
Silva
,
N.
Sergiienko
,
C.
Pesce
,
B.
Ding
,
B.
Cazzolato
, and
H.
Morishita
, “
Stochastic analysis of nonlinear wave energy converters via statistical linearization
,”
Appl. Ocean Res.
95
,
102023
(
2020
).
42.
G.
Knott
and
J.
Flower
, “
Measurement of energy losses in oscillatory flow through a pipe exit
,”
Appl. Ocean Res.
2
,
155
164
(
1980
).
43.
L.
Hick
,
D.
Tothova
,
R.
Manasseh
, and
S. A.
Sannasiraj
, “
Efficiency improvements from rounded oscillating water column entrances and implications for coastal protection
,”
in Proceedings of 23rd IAHR-APD Congress 2022
,
IIT Madras, India
,
14–17 December
2022
.
44.
C. M.
Linton
and
P.
McIver
,
Handbook of Mathematical Techniques for Wave/Structure Interactions
(
CRC Press
,
2001
).
You do not currently have access to this content.