The load-bearing capacity is a pivotal consideration in the design of offshore renewable energy structures. This paper aims to address the technical challenges associated with the additional wave loads caused by the integrated devices in a hybrid system for the multi-purpose utilization of coastal renewable energy. A self-protected hybrid wind-wave energy system is proposed, in which an oscillating water column (OWC) device is attached at a monopile foundation of an offshore wind turbine. In the meantime, the OWC is connected by a submerged horizontal perforated plate at its exterior shell, which is expected to minimize the wave loads on the system. The hydrodynamic performance of the system is investigated. A novel approach is developed to model the wave interaction with the hybrid system. This efficient approach removes the necessity of decomposing the wave-scattering field into diffraction and pressure-dependent radiation components. Detailed numerical computation is then conducted for both regular and irregular sea states. Various hydrodynamic properties related to the system, such as wave energy harvesting, wave force/moment, and free-surface elevation, have been evaluated. Numerical results manifest the feasibility of imposing a negligible effect on the high wave energy harvesting while reducing the high wave loads by manipulating the submerged horizontal perforated plate. The impact of the perforated plate on the dominant wave energy harvesting in the long-period region is found to be trivial. In contrast, it can affect the high bending moment in the short-period region, which causes a reduction of greater than 15%.

1.
Arshad
,
M.
and
O'Kelly
,
B. C.
, “
Analysis and design of monopile foundations for offshore wind-turbine structures
,”
Mar. Georesour. Geotechnol.
34
(
6
),
503
525
(
2016
).
2.
Chwang
,
A. T.
, “
A porous-wavemaker theory
,”
J. Fluid Mech.
132
,
395
406
(
1983
).
3.
Cho
,
I. H.
and
Kim
,
M. H.
, “
Wave absorbing system using inclined perforated plates
,”
J. Fluid Mech.
608
,
1
20
(
2008
).
4.
Cho
,
I. H.
and
Kim
,
M. H.
, “
Transmission of oblique incident waves by a submerged horizontal porous plate
,”
Ocean Eng.
61
,
56
65
(
2013
).
5.
Cheng
,
Z. S.
,
Wen
,
T. R.
,
Ong
,
M. C.
, and
Wang
,
K.
, “
Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept
,”
Energy
171
,
190
204
(
2019
).
6.
Cong
,
P. W.
,
Teng
,
B.
,
Bai
,
W.
, and
Liu
,
Y. Y.
, “
Wave power absorption by an oscillating water column (OWC) device of annular cross-section in a combined wind-wave energy system
,”
Appl. Ocean Res.
107
,
102499
(
2021
).
7.
Cong
,
P. W.
,
Teng
,
B.
,
Liu
,
Y. Y.
, and
Ning
,
D. Z.
, “
A numerical approach for hydrodynamic performance evaluation of multi-degree-of-freedom floating oscillating water column (OWC) devices
,”
J. Fluids Struct.
114
,
103730
(
2022
).
8.
Konispoliatis
,
D. N.
,
Katsaounis
,
G. M.
,
Manolas
,
D. I.
et al, “
REFOS: A renewable energy multi-purpose floating offshore system
,”
Energies
14
(
11
),
3126
(
2021
).
9.
Evans
,
D. V.
and
Porter
,
R.
, “
Efficient calculation of hydrodynamic properties of OWC-Type devices
,”
J. Offshore Mech. Arct. Eng.
119
(
4
),
210
218
(
1997
).
10.
Evans
,
D. V.
and
Peter
,
M. A.
, “
Asymptotic reflection of linear water waves by submerged horizontal porous plates
,”
J. Eng. Math.
69
,
135
154
(
2011
).
11.
Gao
,
Q.
,
Yuan
,
R.
,
Ertugrul
,
N.
,
Ding
,
B. Y.
,
Hayward
,
J. A.
, and
Li
,
Y.
, “
Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system
,”
Appl. Energy
342
,
121192
(
2023
).
12.
Hu
,
J.
,
Zhou
,
B. Z.
,
Vogel
,
C.
,
Liu
,
P.
,
Willden
,
R.
,
Sun
,
K.
,
Zang
,
J.
,
Geng
,
J.
,
Jin
,
P.
,
Cui
,
L.
,
Jiang
,
B.
, and
Collu
,
M.
, “
Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters
,”
Appl. Energy
269
,
114998
(
2020
).
13.
Huang
,
Z. H.
,
Li
,
Y. C.
, and
Liu
,
Y.
, “
Hydraulic performance and wave loadings of perforated/slotted coastal structures: A review
,”
Ocean Eng.
38
(
10
),
1031
1053
(
2011
).
14.
Jiang
,
Z. Y.
,
Gao
,
Z.
,
Ren
,
Z. R.
,
Li
,
Y.
, and
Duan
,
L.
, “
A parametric study on the final blade installation process for monopile wind turbines under rough environmental conditions
,”
Eng. Struct.
172
,
1042
1056
(
2018
).
15.
Karimirad
,
M.
,
Offshore Energy Structures: For Wind Power, Wave Energy and Hybrid Marine Platforms
(
Springer
,
2014
).
16.
Li
,
Y.
,
Zhao
,
X. L.
,
Geng
,
J.
,
Mackay
,
E.
, and
Johanning
,
L.
, “
Wave scattering by a vertical cylinder with a submerged porous plate: Further analysis
,”
Ocean Eng.
259
,
111711
(
2022c
).
17.
Li
,
Y. C.
,
Liu
,
Y.
, and
Teng
,
B.
, “
Porous effect parameter of thin permeable plates
,”
Coastal Eng. J.
48
(
04
),
309
336
(
2006
).
18.
Li
,
Y. M.
,
Ong
,
M. C.
,
Wang
,
K.
,
Li
,
L. B.
, and
Cheng
,
Z. S.
, “
Power performance and dynamic responses of an integrated system with a semisubmersible wind turbine and four torus-shaped wave energy converters
,”
Ocean Eng.
259
,
111810
(
2022a
).
19.
Li
,
Y. N.
,
Liu
,
S. Z.
,
Xu
,
C. L.
,
Li
,
D. M.
, and
Shi
,
H. D.
, “
Experimental study on the cylindrical oscillating water column device
,”
Ocean Eng.
246
,
110523
(
2022b
).
20.
Liang
,
H.
,
Zheng
,
S.
,
Shao
,
Y.
,
Chua
,
K. H.
,
Choo
,
Y. S.
, and
Greaves
,
D.
, “
Water wave scattering by impermeable and perforated plates
,”
Phys. Fluids
33
(
7
),
077111
(
2021
).
21.
Liang
,
H.
,
Zheng
,
S.
,
Magee
,
A. R.
, and
Greaves
,
D.
, “
Water wave interactions with perforated elastic disks: Quadratic pressure discharge condition
,”
Phys. Rev. Fluids
7
(
5
),
054802
(
2022
).
22.
Liu
,
Y.
,
Li
,
H. J.
, and
Li
,
Y. C.
, “
A new analytical solution for wave scattering by a submerged horizontal porous plate with finite thickness
,”
Ocean Eng.
42
,
83
92
(
2012
).
23.
Liu
,
Y.
,
Li
,
Y. C.
,
Teng
,
B.
, and
Dong
,
S.
, “
Wave motion over a submerged breakwater with an upper horizontal porous plate and a lower horizontal solid plate
,”
Ocean Eng.
35
(
16
),
1588
1596
(
2008
).
24.
Luan
,
C.
,
Michailides
,
C.
,
Gao
,
Z.
, and
Moan
,
T.
, “
Modeling and analysis of a 5 MW semisubmersible wind turbine combined with three flap-type wave energy converters
,” in
Proceedings of the 33rd International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
San Francisco, California
,
2014
).
25.
Mavrakos
,
S. A.
, “
Wave loads on a stationary floating bottomless cylindrical body with finite wall thickness
,”
Appl. Ocean Res.
7
(
4
),
213
224
(
1985
).
26.
Martins-Rivas
,
H.
and
Mei
,
C. C.
, “
Wave power extraction from an oscillating water column at the tip of a breakwater
,”
J. Fluid Mech.
626
,
395
414
(
2009
).
27.
Meng
,
F. T.
,
Sergiienko
,
N.
,
Ding
,
B. Y.
,
Zhou
,
B. Z.
,
Da Silva
,
L. S. P.
,
Cazzolato
,
B.
, and
Li
,
Y.
, “
Co-located offshore wind–wave energy systems: Can motion suppression and reliable power generation be achieved simultaneously?
,”
Appl. Energy
331
,
120373
(
2023
).
28.
Meylan
,
M. H.
,
Bennetts
,
L. G.
, and
Peter
,
M. A.
, “
Water-wave scattering and energy dissipation by a floating porous elastic plate in three dimensions
,”
Wave Motion
70
,
240
250
(
2017
).
29.
Michailides
,
C.
,
Gao
,
Z.
, and
Moan
,
T.
, “
Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type Wave Energy Converters
,”
Renewable Energy
93
,
675
690
(
2016a
).
30.
Michailides
,
C.
,
Gao
,
Z.
, and
Moan
,
T.
, “
Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions
,”
Mar. Struct.
50
,
35
54
(
2016b
).
31.
Michele
,
S.
,
Renzi
,
E.
,
Perez-Collazo
,
C.
,
Greaves
,
D.
, and
Iglesisa
,
G.
, “
Power extraction in regular and random waves from an OWC in hybrid wind-wave energy systems
,”
Ocean Eng.
191
,
106519
(
2019
).
32.
Mohapatra
,
S. C.
,
Sahoo
,
T.
, and
Soares
,
C. G.
, “
Surface gravity wave interaction with a submerged horizontal flexible porous plate
,”
Appl. Ocean Res.
78
,
61
74
(
2018
).
33.
Muliawan
,
M. J.
,
Karimirad
,
M.
, and
Moan
,
T.
, “
Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter
,”
Renewable Energy
50
,
47
57
(
2013
).
34.
Perez-Collazo
,
C.
,
Greaves
,
D.
, and
Iglesias
,
G.
, “
Hydrodynamic response of the WEC sub-system of a novel hybrid wind-wave energy converter
,”
Energy Convers. Manage.
171
,
307
325
(
2018
).
35.
Poguluri
,
S. K.
,
Kim
,
J.
,
George
,
A.
, and
Cho
,
I. H.
, “
Wave interaction with horizontal multilayer porous plates
,”
J. Waterw., Port, Coastal, Ocean Eng.
148
(
5
),
04022016
(
2022
).
36.
Ren
,
N. X.
,
Ma
,
Z.
,
Shan
,
B. H.
,
Ning
,
D. Z.
, and
Ou
,
J. P.
, “
Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions
,”
Renewable Energy
151
,
966
974
(
2020
).
37.
Sarmiento
,
J.
,
Iturrioz
,
A.
,
Ayllón
,
V.
,
Guanche
,
R.
, and
Losada
,
I. J.
, “
Experimental modelling of a multi-use floating platform for wave and wind energy harvesting
,”
Ocean Eng.
173
,
761
773
(
2019
).
38.
Vijay
,
K. G.
,
Nishad
,
C. S.
,
Neelamani
,
S.
, and
Sahoo
,
T.
, “
Gravity wave interaction with a wave attenuating system
,”
Appl. Ocean Res.
101
,
102206
(
2020
).
39.
Wang
,
X. F.
,
Zeng
,
X. W.
,
Yang
,
X.
, and
Li
,
J. L.
, “
Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling
,”
Appl. Energy
235
,
1335
1350
(
2019
).
40.
Yu
,
X. P.
and
Chwang
,
A. T.
, “
Water waves above submerged porous plate
,”
J. Eng. Mech.
120
(
6
),
1270
1282
(
1994
).
41.
Zhang
,
D. H.
,
Chen
,
Z.
,
Liu
,
X. D.
,
Sun
,
J. L.
,
Yu
,
H.
,
Zeng
,
W. J.
,
Ying
,
Y.
,
Sun
,
Y.
,
Cui
,
L.
,
Yang
,
S. J.
,
Qian
,
P.
, and
Si
,
Y. L.
, “
A coupled numerical framework for hybrid floating offshore wind turbine and oscillating water column wave energy converters
,”
Energy Convers. Manage.
267
,
115933
(
2022
).
42.
Zhao
,
F. F.
,
Bao
,
W. G.
,
Kinoshita
,
T.
, and
Itakura
,
H.
, “
Theoretical and experimental study on a porous cylinder floating in waves
,”
J. Offshore Mech. Arct. Eng.
133
,
011301
(
2011
).
43.
Zhao
,
F. F.
,
Zhang
,
T. Z.
,
Wan
,
R.
,
Huang
,
L. Y.
,
Wang
,
X. X.
, and
Bao
,
W. G.
, “
Hydrodynamic loads acting on a circular porous plate horizontally submerged in waves
,”
Ocean Eng.
136
,
168
177
(
2017
).
44.
Zheng
,
S. M.
,
Liang
,
H.
,
Michele
,
S.
, and
Greaves
,
D.
, “
Water wave interaction with an array of submerged circular plates: Hankel transform approach
,”
Phys. Rev. Fluids
8
(
1
),
014803
(
2023
).
45.
Zheng
,
S. M.
,
Meylan
,
M. H.
,
Zhu
,
G. X.
,
Greaves
,
D.
, and
Iglesias
,
G.
, “
Hydroelastic interaction between water waves and an array of circular floating porous elastic plates
,”
J. Fluid Mech.
900
,
A20
(
2020a
).
46.
Zheng
,
S. M.
,
Meylan
,
M. H.
,
Greaves
,
D.
, and
Iglesias
,
G.
, “
Water-wave interaction with submerged porous elastic disks
,”
Phys. Fluids
32
(
4
),
047106
(
2020b
).
47.
Zhou
,
Y.
,
Ning
,
D. Z.
,
Shi
,
W.
,
Johanning
,
L.
, and
Liang
,
D. F.
, “
Hydrodynamic investigation on an OWC wave energy converter integrated into an offshore wind turbine monopile
,”
Coastal Eng.
162
,
103731
(
2020
).
You do not currently have access to this content.