Aerodynamic forces created on the lifting body, like an aircraft wing, can be optimized by modifying the flow field around it. These aerodynamic forces directly influence fuel consumption, thus the economy of flight. Various techniques have been developed and tested on wings for improving aerodynamic efficiency. The present work deals with the integration schemes of fanjets with aircraft wings for the same reason. Fanjets, like bladeless fans, can induce and entrain surrounding air for generation of lift and thrust; however, they are not yet integrated with the wing for modification of aerodynamic forces. In this novel research, the flow physics of the fanjet is explored by varying various geometric parameters. With an increase in the fanjet radius, the mass flow rate decreases, whereas the drag increases. A similar trend was observed for an increase in the jet width. For variation in the angle of attack, the maximum mass flow rate and minimum drag were observed at an angle of 0°. A similar analysis was carried out for semi-annular fanjets. Based on the results, the preferred selection for geometric parameters of annular and semi-annular fanjets was documented for integration with the aircraft wing.

1.
P.
Miller
, “
Dyson's air multiplier is the overpriced bladeless fan you never asked for
,” Endgate (
2009
).
2.
L.
Blain
, “
Jetoptera targets Mach 0.8 with bladeless-propulsion VTOL aircraft
,” New Atlas (
2023
).
3.
Y.
Li
,
J.
Wang
, and
P.
Zhang
, “
Effects of Gurney flaps on a NACA0012 airfoil
,”
Flow, Turbul. Combust.
68
(
1
),
27
39
(
2002
).
4.
B. L.
Storms
and
C. S.
Jang
, “
Lift enhancement of an airfoil using a Gurney flap and vortex generators
,”
J. Aircr.
31
(
3
),
542
547
(
1994
).
5.
R.
Myose
,
M.
Papadakis
, and
I.
Heron
, “
Gurney flap experiments on airfoils, wings, and reflection plane model
,”
J. Aircr.
35
(
2
),
206
211
(
1998
).
6.
M. A.
Azlin
,
C. F.
Mat Taib
,
S.
Kasolang
, and
F. H.
Muhammad
, “
CFD analysis of winglets at low subsonic flow
,” in
Proceedings of the World Congress on Engineering 2011
(International Association of Engineers,
2011
), Vol.
1
, pp.
87
91
.
7.
H.
Chen
and
B.
Chen
, “
Aerodynamic performance enhancement of tiltrotor aircraft wings using double-row vortex generators
,”
Int. J. Aeronaut. Space Sci.
22
(
4
),
802
812
(
2021
).
8.
G.
Godard
and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators
,”
Aerosp. Sci. Technol.
10
(
3
),
181
191
(
2006
).
9.
N.
Namura
and
S.
Jeong
, “
Parametric study of vortex generators on a super critical infinite-wing to alleviate shock-induced separation
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
56
(
5
),
293
302
(
2013
).
10.
T. C.
Tai
, “
Effect of midwing vortex generators on V-22 aircraft forward-flight aerodynamics
,”
J. Aircr.
40
,
623
630
(
2003
).
11.
X.
Li
,
K.
Yang
, and
X.
Wang
, “
Experimental and numerical analysis of the effect of vortex generator height on vortex characteristics and airfoil aerodynamic performance
,”
Energies (Basel)
12
(
5
),
959
(
2019
).
12.
M. J.
Walsh
, “
Riblets as a viscous drag reduction technique
,”
AIAA J.
21
(
4
),
485
486
(
1983
).
13.
E.
Coustols
and
J.
Cousteix
,
Structure of Turbulence and Drag Reduction
(
Springer
,
Berlin, Heidelberg
,
1990
), pp.
577
584
.
14.
P. R.
Viswanath
, “
Aircraft viscous drag reduction using riblets
,”
Prog. Aerosp. Sci.
38
(
6–7
),
571
600
(
2002
).
15.
M.
Walsh
, “Turbulent boundary layer drag reduction using riblets,” in
Proceedings of 20th Aerospace Sciences Meeting
(
American Institute of Aeronautics and Astronautics
,
Reston, Virigina
,
1982
), pp. 2–8.
16.
D. W.
Bechert
,
M.
Bruse
,
W.
Hage
,
J. G. T.
Van Der Hoeven
, and
G.
Hoppe
, “
Experiments on drag-reducing surfaces and their optimization with an adjustable geometry
,”
J. Fluid Mech.
338
,
59
87
(
1997
).
17.
E. H.
Hirschel
and
P.
Thiede
,
Fluid Dynamics of Three-Dimensional
(
Defense Technical Information Center
,
Turkey
,
1989
).
18.
A.
Bahrami
,
S.
Hoseinzadeh
,
P. S.
Heyns
, and
S. M.
Mirhosseini
, “
Experimental investigation of co-flow jet's airfoil flow control by hot wire anemometer
,”
Rev. Sci. Instrum.
90
(
12
),
125107
(
2019
).
19.
H. H.
Açıkel
and
M. S.
Genç
, “
Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface
,”
Energy
165
,
176
190
(
2018
).
20.
J.
Lei
,
Q.
Liu
, and
T.
Li
, “
Suction control of laminar separation bubble over an airfoil at low Reynolds number
,”
Proc. Inst. Mech. Eng., Part G
233
(
1
),
81
90
(
2019
).
21.
M. A.
Agate
,
A.
Pande
,
J. C.
Little
,
H. F.
Fasel
, and
A.
Gross
, “
Active flow control of the laminar separation bubble on an oscillating airfoil near stall
,” AIAA Paper No. 2018-2049,
2018
.
22.
L.
Huang
,
P. G.
Huang
,
R. P.
LeBeau
, and
T.
Hauser
, “
Numerical study of blowing and suction control mechanism on NACA0012 airfoil
,”
J. Aircr.
41
(
5
),
1005
1013
(
2004
).
23.
K.
Yousefi
and
R.
Saleh
, “
Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing
,”
Meccanica
50
(
6
),
1481
1494
(
2015
).
24.
F. O.
Thomas
and
V. W.
Goldschmidt
, “
Structural characteristics of a developing turbulent planar jet
,”
J. Fluid Mech.
163
,
227
256
(
1986
).
25.
N. W. M.
Ko
and
W. T.
Chan
, “
Similarity in the initial region of annular jets: Three configurations
,”
J. Fluid Mech.
84
(
4
),
641
656
(
1978
).
26.
N. W. M.
Ko
and
W. T.
Chan
, “
The inner regions of annular jets
,”
J. Fluid Mech.
93
(
3
),
549
584
(
1979
).
27.
W. T.
Chan
and
N. W. M.
Ko
, “
Coherent structures in the outer mixing region of annular jets
,”
J. Fluid Mech.
89
(
3
),
515
533
(
1978
).
28.
H.
Rehab
,
E.
Villermaux
, and
E. J.
Hopfinger
, “
Geometrical effects on the near-field flow structure of coaxial jets
,”
AIAA J.
36
,
867
869
(
1998
).
29.
Z.
Trávníček
and
V.
Tesař
, “
Annular impinging jet with recirculation zone expanded by acoustic excitation
,”
Int. J. Heat Mass Transfer
47
(
10–11
),
2329
2341
(
2004
).
30.
C. G.
Ball
,
H.
Fellouah
, and
A.
Pollard
, “
The flow field in turbulent round free jets
,”
Prog. Aerosp. Sci.
50
,
1
26
(
2012
).
31.
H.
Aslam
,
M. Z.
Arif
,
M.
Ali
, and
A.
Javed
, in Proceedings of
2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST)
(
IEEE
,
2021
), pp.
782
787
.
32.
A.
Li
, “
Characterization of aerodynamic and acoustic performance of bladeless fan
,” M.S. thesis (
Purdue University
,
2019
).
33.
M.
Jafari
,
H.
Afshin
,
B.
Farhanieh
, and
A.
Sojoudi
, “
Numerical investigation of geometric parameter effects on the aerodynamic performance of a bladeless fan
,”
Alexandria Eng. J.
55
(
1
),
223
233
(
2016
).
34.
K.
Mehmood
,
A.
Shahzad
,
J.
Masud
,
F.
Akram
,
M. N.
Mumtaz
, and
T. A.
Shams
, “
Numerical analysis of bladeless ceiling fan: An effective alternative to conventional ceiling fan
,”
J. Wind Eng. Ind. Aerodyn.
221
,
104905
(
2022
).
35.
K.
Mehmood
,
A.
Shahzad
,
F.
Akram
,
T. A.
Shams
,
M. N.
Mumtaz
, and
J.
Masud
, “
Design optimization of bladeless ceiling fan using design of experiments
,”
J. Wind Eng. Ind. Aerodyn.
233
,
105313
(
2023
).
36.
H.
Li
,
X.
Jin
,
H.
Deng
, and
Y.
Lai
, “
Experimental investigation on the outlet flow field structure and the influence of Reynolds number on the outlet flow field for a bladeless fan
,”
Appl. Therm. Eng.
100
(
6–7
),
972
978
(
2016
).
37.
D.
Ravi
and
T. K. R.
Rajagopal
, “
Numerical investigation on the effect of geometric shape and outlet angle of a bladeless fan for flow optimization using CFD techniques
,”
Int. J. Thermofluids
15
,
100174
(
2022
).
You do not currently have access to this content.