A strong micro heat engine that can be used in the untethered state is essential for next-generation microrobotics. Here, we propose a rapid swimmer using explosive boiling due to electrical discharge in water. Specifically, we demonstrate that the water-repellent swimmer that has an aluminum discharge antenna in the rear part can swim with the maximum velocity of ∼14 cm/s on the water surface like a water strider between a pair of parallel electrodes in a shallow water pool by applying direct current high-voltage pulses repeatedly. Moreover, by the video observation with high speed (960 fps), we found that an asymmetrical wave was generated immediately after the discharge, and it propelled the swimmer. Our findings should contribute to next-generation microrobots in the future.

1.
S.
Nocentini
,
C.
Parmeggiani
,
D.
Martella
, and
D. S.
Wiersma
, “
Optically driven soft micro robotics
,”
Adv. Opt. Mater.
6
,
1800207
(
2018
).
2.
S.
Fu
,
F.
Wei
,
C.
Yin
,
L.
Yao
, and
Y.
Wang
, “
Biomimetic soft micro-swimmers: from actuation mechanisms to applications
,”
Biomed. Microdev.
23
,
6
(
2021
).
3.
Y.
Chen
,
D.
Chen
,
S.
Liang
,
Y.
Dai
,
X.
Bai
,
B.
Song
,
D.
Zhang
,
H.
Chen
, and
L.
Feng
, “
Recent advances in field‐controlled micro–nano manipulations and micro–nano robots
,”
Adv. Intell. Syst.
4
,
2100116
(
2022
).
4.
G.
Wang
,
J. R.
McDonough
,
V.
Zivkovic
,
T.
Long
, and
S.
Wang
, “
From thermal energy to kinetic energy: Droplet motion triggered by the leidenfrost effect
,”
Adv. Mater. Interfaces
8
,
2001249
(
2021
).
5.
H.
Linke
,
B. J.
Alemán
,
L. D.
Melling
,
M. J.
Taormina
,
M. J.
Francis
,
C. C.
Dow-Hygelund
,
V.
Narayanan
,
R. P.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
,
154502
(
2006
).
6.
A.
Hashmi
,
Y.
Xu
,
B.
Coder
,
P. A.
Osborne
,
J.
Spafford
,
G. E.
Michael
,
G.
Yu
, and
J.
Xu
, “
Leidenfrost levitation: Beyond droplets
,”
Sci. Rep.
2
,
797
(
2012
).
7.
G. G.
Wells
,
R.
Ledesma-Aguilar
,
G.
McHale
, and
K.
Sefiane
, “
A sublimation heat engine
,”
Nat. Commun.
6
,
6390
(
2015
).
8.
H.
Xu
,
A.
Thissandier
,
R.
Zhao
,
P.
Tao
,
C.
Song
,
J.
Wu
,
W.
Shang
, and
T.
Deng
, “
Self-propelled rotation of paper-based Leidenfrost rotor
,”
Appl. Phys. Lett.
114
,
113703
(
2019
).
9.
L. E.
Dodd
,
P.
Agrawal
,
N. R.
Geraldi
,
B. B.
Xu
,
G. G.
Wells
,
J.
Martin
,
M. I.
Newton
,
G.
McHale
, and
D.
Wood
, “
Planar selective Leidenfrost propulsion without physically structured substrates or walls
,”
Appl. Phys. Lett.
117
,
081601
(
2020
).
10.
A.
Li
,
H.
Li
,
S.
Lyu
,
Z.
Zhao
,
L.
Xue
,
Z.
Li
,
K.
Li
,
M.
Li
,
C.
Sun
, and
Y.
Song
, “
Tailoring vapor film beneath a Leidenfrost drop
,”
Nat. Commun.
14
,
2646
(
2023
).
11.
H.
Sugioka
,
M.
Kubota
, and
S.
Segawa
, “
Leidenfrost mixer
,”
Jpn. J. Appl. Phys.
58
,
048001
(
2019
).
12.
H.
Sugioka
,
S.
Segawa
, and
M.
Kubota
, “
High-speed side-shooter using Leidenfrost phenomena
,”
J. Appl. Phys.
125
,
134502
(
2019
).
13.
H.
Sugioka
and
A.
Miyauchi
, “
Generation of a net flow due to fixed oblique beam structures in the nucleate boiling region
,”
Phys. Fluids
35
,
024102
(
2023
).
14.
H.
Sugioka
,
K.
Murata
, and
Y.
Arai
, “
Launching phenomenon of a centimeter-scale solid object using explosive boiling due to electrical discharge in water
,”
Phys. Fluids
35
,
054105
(
2023
).
15.
D.
Quéré
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
(
2013
).
16.
A.
Bouillant
,
T.
Mouterde
,
P.
Bourrianne
,
A.
Lagarde
,
C.
Clanet
, and
D.
Quéré
, “Leidenfrost wheels,”
Nat. Phys.
10
,
1038
(
2018
).
17.
J.
Li
,
X.
Zhou
,
Y.
Zhang
,
C.
Hao
,
F.
Zhao
,
M.
Li
,
H.
Tang
,
W.
Ye
, and
Z.
Wang
, “
Rectification of mobile Leidenfrost droplets by planar ratchets
,”
Small
16
,
1901751
(
2020
).
18.
B.
Sobac
,
L.
Maquet
,
A.
Duchesne
,
H.
Machrafi
,
A.
Rednikov
,
P.
Dauby
,
P.
Colinet
, and
S.
Dorbolo
, “
Self-induced flows enhance the levitation of Leidenfrost drops on liquid baths
,”
Phys. Rev. Fluids
5
,
062701
(
2020
).
19.
F.
Moreau
,
P.
Colinet
, and
S.
Dorbolo
, “
Explosive Leidenfrost droplets
,”
Phys. Rev. Fluids
4
,
013602
(
2019
).
20.
P.
Agrawal
,
A.
Buchoux
,
G. G.
Wells
,
R.
Ledesma-Aguilar
,
A. J.
Walton
,
J. G.
Terry
,
G.
McHale
,
K.
Sefiane
, and
A. A.
Stokes
, “
Transition boiling bubble powered micro-engine using a Leidenfrost bearing
,”
Appl. Therm. Eng.
229
,
120565
(
2023
).
21.
S.
Lyu
,
V.
Mathai
,
Y.
Wang
,
B.
Sobac
,
P.
Colinet
,
D.
Lohse
, and
C.
Sun
, “
Final fate of a Leidenfrost droplet: Explosion or takeoff
,”
Sci. Adv.
5
,
eaav8081
(
2019
).
22.
S. E.
Spagnolie
and
P. T.
Underhill
, “
Swimming in complex fluids
,”
Annu. Rev. Condens. Matter Phys.
14
,
381
(
2023
).
23.
B. U.
Felderhof
, “
Comparison of swimming in water and swimming in syrup for two hydromechanical models
,”
Phys. Fluids
34
,
011903
(
2022
).
24.
M.
Eberhard
,
A.
Choudhary
, and
H.
Stark
, “
Why the reciprocal two-sphere swimmer moves in a viscoelastic environment
,”
Phys. Fluids
35
,
063119
(
2023
).
25.
B.
Wu
,
C.
Shu
,
M.
Wan
,
Y.
Wang
, and
S.
Chen
, “
Hydrodynamic performance of an unconstrained flapping swimmer with flexible fin: A numerical study
,”
Phys. Fluids
34
,
011901
(
2022
).
26.
B.
Wu
,
C.
Shu
,
H.
Lee
, and
M.
Wan
, “
Numerical study on the hydrodynamic performance of an unconstrained carangiform swimmer
,”
Phys. Fluids
34
,
121902
(
2022
).
27.
B.
Wu
,
C.
Shu
,
H.
Lee
, and
M.
Wan
, “
The effects of caudal fin's bending stiffness on a self-propelled carangiform swimmer
,”
Phys. Fluids
34
,
041901
(
2022
).
28.
A.
Pourfarzan
and
J. G.
Wong
, “
Constraining optimum swimming strategies in plesiosaurs: The effect of amplitude ratio on tandem pitching foils
,”
Phys. Fluids
34
,
051908
(
2022
).
29.
A.
Starikovskiy
,
Y.
Yang
,
Y. I.
Cho
, and
A.
Fridman
, “
Non-equilibrium plasma in liquid water: Dynamics of generation and quenching
,”
Plasma Sources Sci. Technol.
20
,
024003
(
2011
).
30.
K. Y.
Ma
,
P.
Chirarattananon
,
S. B.
Fuller
, and
R. J.
Wood
, “
Controlled flight of a biologically inspired, insect-scale robot
,”
Science
340
,
603
(
2013
).
31.
Y.
Chen
,
H.
Zhao
,
J.
Mao
,
P.
Chirarattananon
,
E. F.
Helbling
,
N.-s. P.
Hyun
,
D. R.
Clarke
, and
R. J.
Wood
, “
Controlled flight of a microrobot powered by soft artificial muscles
,”
Nature
575
,
324
(
2019
).
32.
H.
Akiyama
and
M.
Akiyama
, “
Pulsed discharge plasmas in contact with water and their applications
,”
IEEJ Trans. Electr. Electron. Eng.
16
,
6–14
(
2021
).
33.
A.
Frolov
,
V.
Stelmashuk
,
K.
Kolacek
,
V.
Prukner
,
A.
Tuholukov
,
P.
Hoffer
,
J.
Straus
,
J.
Schmidt
,
V.
Jirasek
, and
E.
Oliva
, “
Pressure in underwater spark discharge initiated with the help of bubble injection and its evaluation based on H-alpha line broadening
,”
J. Phys. D
56
,
285201
(
2023
).
34.
J.
Beneš
,
J.
Chmel
,
V.
Dufek
,
V.
Kordač
,
C.
Štuka
,
P.
Šunka
,
M.
Kaláb
, and
A.
Hořejší
, “
Extracorporeal shock-wave lithotripsy of the common bile duct stone with ultrasound localization
,”
J. Hepatol.
9
,
95
(
1989
).
35.
H.
Zeghioud
,
P.
Nguyen-Tri
,
L.
Khezami
,
A.
Amrane
, and
A. A.
Assadi
, “
Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes
,”
J. Water Process Eng.
38
,
101664
(
2020
).
36.
W.
Ueda
,
Y.
Nakagawa
, and
F.
Tochikubo
, “
Effects of discharge characteristics and evaluation of pressure of shock wave on underwater discharge as pretreatment for enzymatic saccharification
,”
Jpn. J. Appl. Phys., Part 1
62
,
SL1002
(
2023
).
37.
T.
Merciris
,
F.
Valensi
, and
A.
Hamdan
, “
Synthesis of nickel and cobalt oxide nanoparticles by pulsed underwater spark discharges
,”
J. Appl. Phys.
129
,
063303
(
2021
).
38.
J.
Karthikeyan
,
C.
Berndt
,
J.
Tikkanen
,
S.
Reddy
, and
H.
Her
, “
Plasma spray synthesis of nanomaterial powders and deposits
,”
Mater. Sci. Eng., A
238
,
275
(
1997
).
39.
S.
Kumar
,
R.
Singh
,
T.
Singh
, and
B.
Sethi
, “
Surface modification by electrical discharge machining: A review
,”
J. Mater. Process. Technol.
209
,
3675
(
2009
).
40.
Z.
Chen
,
C. C.
Wong
, and
C.-Y.
Wen
, “
Thermal effects on the performance of a nanosecond dielectric barrier discharge plasma actuator at low air pressure
,”
Phys. Fluids
35
,
017110
(
2023
).
41.
L. N.
Mai
,
T. H.
Vu
,
T. X.
Dinh
,
H. D.
Vu
,
C.-D.
Tran
,
V. T.
Dau
, and
H. K.
Ngo
, “
Numerical study of electrohydrodynamic atomization considering liquid wetting and corona discharge effects
,”
Phys. Fluids
35
,
062014
(
2023
).
42.
Z.
Zavarian
,
G. R.
Abdizadeh
, and
S.
Noori
, “
Numerical investigation of the effect of dielectric barrier discharge plasma actuator-induced momentum jet parameters on flow control of an oscillating wind turbine airfoil
,”
Phys. Fluids
35
,
065137
(
2023
).
43.
X.
Ma
,
J.
Fan
,
Y.
Wu
,
S.
Zhu
, and
R.
Xue
, “
Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction
,”
Phys. Fluids
35
,
036110
(
2023
).
44.
Y.
Guo
,
Z.
Li
,
K.
Chen
, and
X.
Geng
, “
Experimental investigation of the dynamic characteristics of the flow generated by a sliding dielectric barrier discharge in the flat plate boundary layer flow
,”
Phys. Fluids
35
,
017105
(
2023
).
45.
S.
Chen
,
Z.
Shi
,
X.
Geng
,
Z.
Sun
,
Z.
Chen
, and
H.
Ni
, “
Nanosecond plasma actuation by a bending actuator mounted on a sharp edge in quiescent air
,”
Phys. Fluids
35
,
067113
(
2023
).
46.
H.
Sugioka
and
S.
Segawa
, “
Controllable Leidenfrost glider on a shallow water layer
,”
AIP Adv.
8
,
115209
(
2018
).
47.
S.
Buogo
and
G. B.
Cannelli
, “
Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model
,”
J. Acoust. Soc. Am.
111
,
2594
(
2002
).
48.
F. N.
Piñan Basualdo
,
A.
Bolopion
,
M.
Gauthier
, and
P.
Lambert
, “
A microrobotic platform actuated by thermocapillary flows for manipulation at the air-water interface
,”
Sci. Rob.
6
,
eabd3557
(
2021
).
49.
D.
Okawa
,
S. J.
Pastine
,
A.
Zettl
, and
J. M. J.
Fréchet
, “
Surface tension mediated conversion of light to work
,”
J. Am. Chem. Soc.
131
,
5396
(
2009
).
You do not currently have access to this content.